首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary. Workers of the amblyoponine species Mystrium rogeri employ trail communication during recruitment to food sources and new nest sites. The trail pheromone originates from a hitherto unknown sternal gland located in the 7th abdominal sternite. The recruiting ant deposits the gland secretions by a special gaster-dragging behavior. The recruitment behavior can be complemented by a rapid vertical body shaking performed by some recruiting ants inside the nest. M. rogeri workers possess a large pygidial gland, the secretion of which elicits a repellent response in other ant species. Received 25 May 1998; accepted 15 June 1998.  相似文献   

2.
Summary. In the rove beetle Aleochara curtula, a male specific sternal gland is described. Isopropyl (Z9)-hexadecenoate has been identified by GC/MS of surface and sternal gland extracts as a male specific compound. Its emission in the air was demonstrated by closed-loopstripping-analyses. In field experiments, conspecific males and females were attracted by the odor of carrion, caged males from laboratory cultures, and by the synthetic ester. Isopropyl (Z9)-hexadecenoate or live males, combined with fresh carrion attract more beetles than a fresh carcass alone. Isopropyl hexadecanoate as a minor compound was not attractive. The term “aggregation” pheromone and the ecological significance of attracting females to a fresh carcass allowing early copulation and egg-deposition are discussed. Received 20 August 1998; accepted 15 January 1999.  相似文献   

3.
Summary. Larvae of Chrysomela leaf beetles release for defence volatile compounds belonging to various chemical families. This study focuses on the defensive strategy based on the esterification of isobutyric acid and 2-methylbutyric acid with a wide variety of alcohols taken up from the host plant. To date, only two species are known to produce these repellents C. interrupta, which is associated with Betulaceae and C. lapponica which occurs either on Betulaceae or Salicaceae.? In order to know if other species have developed this chemical defence and how the food plant influences the secretion of these toxins, we targeted by mass spectrometry the presence of iso- and 2-methylbutyric acids and esters of them in the defensive secretions of Chrysomela larvae exclusively associated with Betulaceae or Salicaceae. ?Screening analyses reveal that the synthesis of these compounds is a common character restricted to all the members belonging to the C. interrupta group sensu Brown (1956) regardless of the host-plant family. These results suggest that the biochemical mechanism leading to the synthesis of these compounds could be considered as a synapomorphy meaning that the group is probably monophyletic. ?Defensive secretions of the members of the interrupta group are quantitatively assayed for iso- and 2-methylbutyric acids and their (Z)-3-hexenyl esters. Results reveal a chemical plasticity developed by Chrysomela species associated with Salicaceae. The amounts of iso- and 2-methylbutyric acids derivatives and of salicylaldehyde in their larval secretions depend on the food plant and on its content in phenolglucosides. Received 5 October 1998; accepted 25 November 1998.  相似文献   

4.
Summary. Male obliquebanded leafrollers, Choristoneura rosaceana (Harris), were induced to respond to a pheromone source tainted with a behavioural antagonist, Z9-tetradecenyl acetate, when a source releasing the antagonist was placed 10 cm upwind of the tainted source in a wind tunnel. However, placement of the antagonist upwind of an attractive pheromone source did not interrupt pheromone-mediated responses. Placement of a source releasing Z9-tetradecenyl acetate, a minor pheromone component of the sympatric species, the threelined leafroller, Pandemis limitata (Robinson), upwind of a calling P. limitata female, reduced conspecific male pheromone-mediated response but resulted in upwind flight by male C. rosaceana and contact with heterospecific females. Male P. limitata locked on and flew upwind to but did not contact heterospecific females when a source releasing Z9-tetradecenyl acetate was positioned upwind of a calling C. rosaceana female. In the field, adaptation or habituation to Z9-tetradecenyl acetate caused by atmospheric treatment with this compound apparently resulted in reciprocal heterospecific pheromone responses. More C. rosaceana males were captured in traps baited with their pheromone and the behavioural antagonist in small field plots treated atmospherically with Z9-tetradecenyl acetate than in nontreated control plots. Fewer male P. limitata were captured in traps baited with their own pheromone, or with C. rosaceana pheromone tainted with Z9-tetradecenyl acetate in plots treated atmospherically with Z9-tetradecenyl acetate than in nontreated control plots. We argue that Z9-tetradecenyl acetate is an important synomone which assists in partitioning the sexual chemical communication channels of C. rosaceana and P. limitata. Received 9 February 1999; accepted 22 March 1999.  相似文献   

5.
Summary. Queens in colonies of the small myrmicine ant, Leptothorax gredleri Mayr 1855 (Hymenoptera, Formicidae) engage in dominance interactions and form social hierarchies, in which typically only the top-ranking queen lays eggs. Occasionally, queen antagonism escalates to violent mandible fighting, during which the sting is used to apply Dufour gland secretions onto the cuticle of the opponent. Contaminated queens often are attacked by nestmate workers. Here we show that the chemical composition of the Dufour gland is colony-specific and that workers can discriminate between secretions from their own and other colonies. Our findings suggest that Dufour gland secretions are involved in the establishment of hierarchies within a colony. When invading an alien colony the queen presumably employs the secretions during the expulsion of the resident queen. Apparently, Dufour gland secretions play a role in intraspecific queen competition similar to that in slave-making and inquiline formicoxenine ants, where they function as "propaganda substances" in an interspecific context. Received 7 July 1998; accepted 15 September 1998.  相似文献   

6.
Summary. Research on insect migration has justifiably emphasized females – the so-called “oogenesis-flight syndrome”– since it is the females that place the eggs into new habitats. The large and small milkweed bugs, Oncopeltus fasciatus and Lygaeus kalmii, respectively, have featured prominently in studies of insect migration and sequestration of host plant toxins for chemical defense. Here we report that males of these species, and males of another well-studied lygaeine (Neacoryphus bicrucis), produce pheromones in glands usually considered to serve only a defensive role in Heteroptera (the metathoracic scent glands), and that these pheromones are exploited by a tachinid parasitoid as a host-finding kairomone. The pheromones are mixtures of C6 and C8 saturated and unsaturated esters reminiscent of lepidopteran pheromones, and the key compound of the O. fasciatus pheromone has now been correctly identified as (E)-2,7-octadienyl acetate. It is proposed that the concept of the oogenesis-flight syndrome for these kinds of insects should accommodate the role of males in the migration process. The hypothesis is presented that male-produced pheromones play a significant role in guiding colonization of new habitats in many heteropteran species. In addition, data are presented suggesting that there is a trade-off between the amount of pheromone produced by colonizing males and the host breadth of the species. Received 21 December 1998; accepted 15 February 1999.  相似文献   

7.
Summary. An aphidiid wasp, Paralipsis eikoae, was associated with both Lasius niger and L. sakagamii attending the wormwood root aphid Sappaphis piri. An L. sakagamii worker was observed carrying a winged female P. eikoae to its nest with its mandible, but it did not kill the wasp. Once accepted by the ants, the wasp often mounted and rubbed against the worker ants and sometimes teased them to regurgitate food to itself. No workers in the colony attacked the wasp. Conspecific foreign workers, however, viciously attacked the wasp when encountered. Gas chromatography-mass spectrometry analyses showed that the accepted wasp had complex cuticular hydrocarbons that were very similar to those of its host ants, whereas the winged wasps collected outside the ant nest showed only a series of n-alkanes. Additionally, the accepted wasp had a hydrocarbon profile closer to that of its host ants than to the conspecific foreign ants. We believe the wasp mimics ant cuticular hydrocarbons to integrate into the ant nest, acquiring the hydrocarbons by mounting and rubbing against the ants. In contrast, the cuticular hydrocarbons of the emerged wasp contained larval and pupal hydrocarbons of L. sakagamii that were also similar to those of L. niger. Both ant species rejected adult workers of the other species but accepted their larvae and pupae. We suggest that the emerged P. eikoae mimics the cuticular hydrocarbons of these Lasius larvae and pupae, which allows P. eikoae to be accepted by both L. sakagamii and L. niger. Received 11 March 1998; accepted 22 July 1998.  相似文献   

8.
Summary. The mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (Say), often co-exist in lodgepole pine, Pinus contorta var. latifolia Engelmann. Intra- and interspecific semiochemical communication occurs in both species and their complete semiochemical repertoire and precise dynamics of pheromone production have not been elucidated. Porapak-Q extracts of captured volatiles from beetles of each species aerated at different attack phases (freshly emerged, pioneer sex alone in the log and both sexes paired in new galleries), followed by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectroscopic analyses identified 17 compounds (seven compounds common to both species, six present in D. ponderosae and four present in I. pini) that excited the antennae of either or both species. Seven compounds for D. ponderosae and nine for I. pini had not been assessed for behavioural activity. In field trapping experiments, 2-phenylethanol produced by both species inhibited the response of D. ponderosae to its aggregation pheromones. exo- and endo-Brevicomin produced by D. ponderosae significantly decreased the response of I. pini to its aggregation pheromone ipsdienol. Nonanal, a ubiquitous compound found in the volatiles of lodgepole pine, various nonhosts and in both beetle species deterred the response of I. pini to ipsdienol. The occurrence of cis-verbenol, trans-verbenol and verbenone in emergent I. pini, and verbenone and 2-phenylethanol in emergent D. ponderosae suggests that these compounds may inhibit aggregation and induce dispersal following emergence. Termination of aggregation in D. ponderosae appears to depend on the production of frontalin in combination with changes in the relative ratios of verbenone, exo-brevicomin, trans-verbenol and 2-phenylethanol. In I. pini, the cessation of ipsdienol production by males is probably the main factor in terminating aggregation. Received 16 November 1999; accepted 7 August 2000  相似文献   

9.
Summary. To gain insight into the evolution of the sex pheromone communication system in Ostrinia (Lepidoptera Pyralidae), the sex pheromone of the burdock borer, O. zealis was analyzed by means of gas chromatography-electroantennographic detection (GC-EAD), GC-mass spectrometry and a series of bioassays. Four EAD-active compounds were detected in the female sex pheromone gland extract, and these were identified as tetradecyl acetate (14:OAc), (Z)-9-tetradecenyl acetate (Z9–14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc) and (Z)-11-tetradecenyl acetate (Z11-14:OAc). The average amounts (ratio) of the four compounds in single sex pheromone glands were 2.5 ng (13%), 11.6 ng (61%), 4.1 ng (21%) and 0.9 ng (5%), respectively. In a wind-tunnel bioassay, the ternary blend of Z9-, E11- and Z11-14:OAc at a ratio found in the sex pheromone gland elicited the same behavioral responses from the males as did virgin females. 14:OAc did not show any enhancement or inhibition of the males’ behavioral responses when added to the ternary blend. The attractiveness of the 3-component lure to O. zealis males was also confirmed by field trapping experiments. Based on these results, we concluded that the sex pheromone of O. zealis is composed of Z9-14:OAc, E11-14:OAc and Z11-14:OAc at a ratio of 70:24:6. The evolutionary changes of the sex pheromones in Ostrinia are also discussed based on the presently available information on the sex pheromones and phylogenetic relationships of Ostrinia spp. Received 25 September 1998; accepted 2 December 1998.  相似文献   

10.
Summary. The phorbol ester DHPB has been detected in 5th instars and adults of Pachycoris klugii which feed on Jatropha curcas, a producer of phorbol esters with mollusc-, insect-, and vertebrate toxicity. DHPB from Pachycoris activates protein kinase C (PKC) which appears to be the main molecular target for phorbol esters. Phorbol esters of J. curcas exhibit a wide range of acute toxic effects in vertebrates and insects. It is therefore likely that the sequestration of DHPB, which would explain the aposematic colouration of the bugs, confers chemical protection to P. klugii against vertebrate predators. Received 26 April 2000; accepted 31 May 2000  相似文献   

11.
Summary. Extracts from the sex pheromone gland of Ostrinia latipennis (Lepidoptera: Crambidae) were analyzed by gas chromatography-electroantennographic detection (GC-EAD) and GC-mass spectrometry. Only an EAD-active compound was detected in the extract, and it was identified as (E)-11-tetradecenol (E11-14:OH). In a wind-tunnel bioassay, E11-14:OH elicited a series of mate finding behaviors from males, although it was far less active than virgin females and crude extract of the pheromone gland. The attractiveness of E11-14:OH to O. latipennis males was confirmed by field trapping experiments. Based on these findings, we concluded that E11-14:OH, which is novel to the genus Ostrinia, is a major component of the sex pheromone in O. latipennis. The significance of the use of alcohol in place of the usual acetates in Ostrinia is discussed in relation to the pheromone biosynthesis system. Received 9 December 1999; accepted 14 March 2000  相似文献   

12.
Summary. We have isolated a caffeoylcyclohexane-1-carboxylic acid derivative, 3-caffeoyl-muco-quinic acid (3-CmQA), as a contact oviposition stimulant for the zebra swallowtail butterfly, Eruytides marcellus (Papilionidae), from the foliage of its primary host plant, Asimina triloba (Annonaceae). This compound alone was as active in stimulating oviposition by females as were the parent ethanolic plant extract and the host plant itself. Other tested isomers of 3-CmQA, including 5-caffeoylquinic acid (5-CQA or trans-chlorogenic acid), were inactive. We found, however, that experienced female butterflies responded strongly to host volatiles, which enhanced landing rates and hence oviposition.? This is the first report of an oviposition stimulant for a swallowtail butterfly of the tribe Graphiini. We found 3-CmQA to be the major caffeoylcyclohexane-1-carboxylic acid isomer in plants of the genus Asimina. These plants lack appreciable amounts of 5-CQA, which has been shown previously to be one of the oviposition stimulants for certain Rutaceae- or Apiaceae-feeding swallowtails of the related tribe Papilionini.? Our findings, along with earlier results from the tribes Troidini and Papilionini, suggest that responses by swallowtails to hydroxycinnamic acid derivatives as oviposition cues date back at least to the ancestor of the subfamily Papilioninae. Received 24 March 1998; accepted 27 May 1998.  相似文献   

13.
Summary. Darna bradleyi Holloway, D. trima Moore, Setothosea asigna van Eecke and Setora nitens Walker are sympatric and coseasonal limacodid moths in plantations of oil palm, Elaeis guineensis Jacq. (Arecales: Palmae), in Borneo, southeast Asia. We tested the hypothesis that these four species maintain reproductive isolation through specificity in diel periods of communication, microlocation for communication and/or communication signal (pheromone). Studying diel periodicity of calling behavior by female moths and response by male moths to traps baited with virgin females or synthetic pheromone, we determined that sexual communication of D. bradleyi and D. trima took place from ˜17:30 to 18:45 hr and that of S. asigna and S. nitens from ˜18:45 to 20:00 hr and from ˜18:30 to 19:30 hr, respectively. Over 80% of male S. asigna and S. nitens were captured in pheromone-baited traps suspended >5 m high, whereas male D. bradleyi and D. trima were captured mostly in traps <5 m high. Synthetic pheromone baits attracted male moths in a species-specific manner. Moreover, baits containing both S. asigna and S. nitens pheromones failed to attract any male moths, indicating that female S. asigna and S. nitens, with overlapping communication periods, use bifunctional pheromone components that attract conspecific males while repelling heterospecifics. Similarly, addition of D. bradleyi pheromone to S. asigna or S. nitens pheromone reduced attraction of male S. asigna and S. nitens. The failure of D. bradleyi and D. trima, which overlap in time and microlocation for communication, to evolve bifunctional pheromones may be attributed to the recent occurrence of sympatry between D. bradleyi and D. trima in Borneo, apparently too recent for bifunctional pheromones to have evolved. We conclude that D. bradleyi, D. trima, S. asigna and S. nitens utilize any or all of diel periodicity, intra and interspecific effects of communication signal and/or microlocation for signaling, allowing these limacodids to co-inhabit the same habitat and remain reproductively isolated. Received 5 May 2000; accepted 18 August 2000  相似文献   

14.
Summary. Field collected exocrine defensive secretions of nine neotropical Platyphora species were analyzed for the presence of plant acquired pyrrolizidine alkaloids (PAs) and pentacyclic triterpene saponins. All species secrete saponins. In addition, five species feeding on Tournefortia (Boraginaceae), Koanophyllon (Asteraceae, tribe Eupatorieae) and Prestonia (Apocynaceae) were shown to sequester PAs of the lycopsamine type, which are characteristic for species of the three plant families. The PA sequestering species commonly store intermedine, lycopsamine and their O3′-acetyl or propionyl esters as well as O7- and O9-hydroxyisovaleryl esters of retronecine. The latter as well as the O3′-acyl esters were not found in the beetles’ host plants, suggesting the ability of the beetles to esterify plant derived retronecine and intermedine or its stereoisomers. Despite the conformity of the beetles’ PA patterns, considerable inconsistencies exist regarding the PA patterns of the respective host plants. One host plant was devoid of PAs, while another contained only simple necines. Since the previous history of the field collected beetles was unknown this discrepancy remains obscure. In contrast to the Palearctic chrysomeline leaf beetles, e.g. some Oreina species which ingest and store PAs as their non-toxic N-oxides, Platyphora leaf beetles absorb and store PAs as the toxic free base (tertiary PA), but apparently avoid to accumulate PAs in the haemolymph. This suggests that Chrysolina and Platyphora leaf beetles developed different lines of adaptations in their parallel evolution of PA mediated chemical defense. Received 30 November 2000; accepted 5 February 2001  相似文献   

15.
Summary. A recent investigation showed that the brown seaweed Dictyota menstrualis was unfouled relative to co-occurring seaweeds, and that larvae of fouling invertebrates avoided settling on D. menstrualis due to chemicals on its surface. The secondary metabolites dictyol E and pachydictyol A are among the compounds found on this alga's surface. In the present study, we tested the effects of specific diterpenes from Dictyota on the survivorship, growth, and development of invertebrate larvae and developing juveniles that could foul seaweeds. Exposure to dictyol E, dictyol B acetate, pachydictyol A, and dictyodial from Dictyota menstrualis and D. ciliolata caused significant larval mortality, abnormal development, and reduce growth rates for three species of co-occurring invertebrates when their larvae were forced into contact with these metabolites. Larvae were damaged at metabolite concentrations as low as 5% of maximum possible surface concentrations of these compounds for the populations of Dictyota we studied. The negative effects of these secondary metabolites on potential foulers, in conjunction with data demonstrating larval avoidance of dictyol-covered surfaces, suggest that these compounds could function as chemical defenses against fouling, and could select for larvae that avoid hosts producing these metabolites. Received 25 May 1998; accepted 22 June 1998.  相似文献   

16.
Summary. Using Porapak Q traps, we collected the bark volatiles of six angiosperm trees native to British Columbia: black cottonwood, Populus trichocarpa Torr. & A. Gray (Salicaceae), trembling aspen, P. tremuloides Michx. (Salicaceae), paper birch, Betula papyrifera Marsh. (Betulaceae), bigleaf maple, Acer macrophyllum Pursh (Aceraceae), red alder, Alnus rubra Bong. (Betulaceae), and Sitka alder, A. viridis ssp. sinuata (Regel) á. L?ve & D. L?ve (Betulaceae). Utilising coupled gas chromatographic-electroantennographic detection analysis, the captured volatiles were assayed for antennal responses in five species of coniferophagous bark beetles (Coleoptera: Scolytidae), sympatric with most or all of the angiosperm trees: the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis (Kirby), the western balsam bark beetle, Dryocoetes confusus Swaine, and the pine engraver, Ips pini (Say). The identities of 25 antennally-active compounds were determined by coupled gas chromatographic-mass spectroscopic analysis, and co-chromatographic comparisons with authentic chemicals. The compounds identified were: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-hexanol, heptanal, α-pinene, frontalin, benzaldehyde, β-pinene, 2-hydroxycyclohexanone, 3-carene, limonene, β-phellandrene, benzyl alcohol, (E)-ocimene, salicylaldehyde, conophthorin, guaiacol, nonanal, methyl salicylate, 4-allylanisole, decanal, thymol methyl ether, (E)-nerolidol, and dendrolasin. A number of these compounds are known semiochemicals that are active in the behaviour of other organisms, including bark beetles, suggesting a high degree of semiochemical parsimony. Antennally-active compounds ranged from seven in A. viridis to 17 in P. trichocarpa. The fewest number of compounds (9) were detected by I. pini and the largest number (24) were detected by D. pseudotsugae. Six compounds excited the antennae of all five species of bark beetles. The large number of antennally-active compounds detected in common by numerous bark beetles and present in common in numerous nonhost trees supports the hypothesis of olfaction-based recognition and avoidance of nonhost angiosperm trees during the process of host selection by coniferophagous bark beetles. Received 13 December 1999; accepted 14 March 2000  相似文献   

17.
Summary. Induction of secondary metabolites to herbivore damage is a widespread phenomenon among plants and serves to enhance resistance by reducing suitability or increasing toxicity of foliage. Post-damage responses of primary metabolites are less well known; reductions in primary metabolites may increase resistance by decreasing palatability or nutritional suitability for herbivores or by potentiating toxicity of secondary metabolites. In this study, we examined response to simulated herbivory in Pastinaca sativa, the wild parsnip, in both primary and secondary metabolites. We found that induction of secondary metabolites in response to damage is largely restricted to a single class of compounds, the furanocoumarins. These prooxidant compounds are known to be toxic to a wide variety of insect herbivores. The only primary metabolite that responded to damage was total soluble protein, which increased significantly 24 h after damage. After 24 h, the correlation between total furanocoumarins and total sugars was significant and negative (r = − 0.697). This correlation likely reflects an independent response of sugar to damage, rather than a diversion of resources into furanocoumarin production, inasmuch as this correlation at 3 h, after furanocoumarin induction had taken place, was not significant. In other secondary metabolite pathways, damage produced a significant decline in farnesene and a C-16 unsaturated fatty acid, 7,10,13-hexadecatrienoic acid, each of which may potentiate the furanocoumarin defense response. Farnesene may enhance photooxidative activation of the furanocoumarins and 7,10,13-hexadecatrienoic acid may serve as a precursor to jasmonic acid, a key hormone in regulating induction responses. With few key exceptions, quantities of both primary and secondary metabolites in wild parsnip foliage are unaffected by damage. Those that are affected may well play a role in resistance of parsnips to herbivores. Received 1 July 1998; accepted 28 September 1998.  相似文献   

18.
Summary. Analysis of individuals of 17 troidine species demonstrated the presence of aristolochic acids in these butterflies in varying concentrations. Although aristolochic acids do not occur in Aristolochia galeata leaves, they were present in Battus polydamas larvae reared on these leaves, and thus may be synthesized by the larvae from chemical precursors in the plant. Received 17 August 1999; accepted 20 January 2000  相似文献   

19.
Summary. It has long been assumed that the North American pipevine swallowtail, Battus philenor (L.) (Papilionidae, Troidini), is protected from natural enemies by aristolochic acids sequestered from its Aristolochia food plants. This study confirmed that populations of B. philenor from Virginia and east Texas sequester these compounds. A comparison of the aristolochic acid profiles of the Virginia butterflies and their A. macrophylla food plants revealed several differences. The aristolochic acid fraction of the foliage was dominated by aristolochic acids I and II, whereas the insects had a much lower proportion of aristolochic acid II and contained, in addition, substantial amounts of aristolochic acids Ia and IVa, which were not detected in the plants. The eggs, larval integument, osmeterial glands, pupal cuticle, and adults (wings and bodies) all contained aristolochic acids. These findings help explain the abundant ecological data indicating that both immature and adult B. philenor are unpalatable and protected from natural enemies. Received 7 April 2000; accepted 31 May 2000  相似文献   

20.
Summary. The dulotic queen ant, Polyergus rufescens, must first penetrate a host colony and kill the resident queen in order to successfully founding a new colony. Successful usurpation by a newly mated queen predictably depends on a dual strategy. Although, it can sneak in by being “chemically insignificant” with respect to cuticular hydrocarbons, it may also need to deter prospective host-worker aggressors. Chemical analysis of Dufour's gland secretion of P. rufescens queens and workers by GS/MS revealed that queen secretion is typified by esters of butanoic acid and acetic acid, of which decyl butanoate comprises over 80%. Butanoates and acetates are also present in the workers' secretion, but these are of higher molecular weight, and octadecyl butanoate represents the major compound. Using synthetic mixtures of queen and worker Dufour's gland, we tested the hypothesis that these secretions modify the aggressive behavior of the host species Formica cunicularia>. The queen-like synthetic mixture significantly reduced aggression of the host workers towards alien conspecifics, but neither pentane nor the worker-like synthetic mixture showed this effect. Although Dufour's gland content of >Polyergus queens was suggested to function as an appeasement pheromone (Topoff et al. 1988; Mori et al. 2000), we hypothesized that it may in fact act as a repellent. In order to test this hypothesis we exposed starved F. cunicularia workers to a droplet of honey on a glass slide applied with one of the following compounds: decyl butanoate (queen major compound), octadecyl butanoate (worker main compound), limonene (a reported ant repellent), and pentane (solvent control). Of these, the workers were repelled only by the decyl butanoate and did not approach the honey. We conclude that during usurpation the queen actively repels aggressive workers by emitting Dufour's gland repellent, comprising the alternative tactic in the usurpation dual strategy. This represents another chemical weapon in the diverse arsenal used by parasites to overcome the host's resistance. Received 7 April 2000; accepted 17 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号