首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From measured diel photosynthesis and respiration rates, using oxygen electrodes, estimates of carbon flux between symbiotic algae (zooxanthellae) and host animal are presented for the marine scyphomedusan Mastigias sp. from a marine lake in Palau, Western Caroline Islands, during February and March 1982. The carbon budgets calculated for these lake medusae indicate that carbon fixed photosynthetically by zooxanthellae and made available to the host may satisfy up to 100% of the host's daily metabolic carbon demand (CZAR). The stable carbon isotope (13C) signature of the mesogleal carbon of lake Mastigias sp. was close to that of the zooxanthellae, supporting the interpretation that while these medusae may feed holozoically, some of their carbon comes from their symbionts. The diel photosynthesis, respiration, and preliminary estimates of carbon budgets of three individuals of another ecotype of Mastigias sp. collected from nearby oceanic lagoons are also given. Photosynthesis of lagoon medusae was generally greater than that for lake medusae of similar size, and lagoon medusae were phototrophic with respect to carbon, with commensurately greater CZAR values. Carbon translocated from the symbiotic algae also may contribute to the growth requirements of both lake and lagoon medusae. From carbon flux data, the lake jellyfish were estimated to contribute about 16% to the total primary productivity of their marine lake habitat.  相似文献   

2.
Scyphistomae of Cassiopea andromeda Forskål, 1775 containing symbiontic zooxanthellae did not develop medusae at a constant temperature of 20°C, but monodisc strobilation was initiated after transfer of the polyps to 24°C. After release of the ephyrae and regeneration of the hypostome and tentacular region, the recovered polyps either produced vegetative buds or entered a new strobilation phase. Formation of motile, planula-like buds was not found to be indicative of unfavourable environmental conditions. Intensity of budding was positively correlated with available food and with increase of temperature. Budding was negatively correlated with the number of polyps maintained per dish and with the conditioning of the sea water. Under optimal feeding and temperature conditions, polyps could simultaneously produce chains of buds at 2 to 4 budding regions. Settlement and development of buds into scyphistomae was suppressed in pasteurized sea water and in pasteurized sea water containing antibiotics, but polyps developed from buds in the presence of algal material taken from the aquarium, debris or egg shells of Artemia salina, or on glass slides which had been incubated in used A. salina culture medium. Several species of marine bacteria were detected after staining these slides. One, a Gramnegative coccoid rod, which was identified as a nonpathogenic Vibrio species, was isolated, cultivated as a pure strain, and was proved to induce the development of C. andromeda buds into polyps. Millipore filter-plates coated with Vibrio sp. cells grown in suspension culture were ineffectual, but diluted filtrate initiated polyp morphogenesis. The inducing factor is obviously not a constituent of the bacterial cell surface, but is a product of growing Vibrio sp. cells released into the medium. This product was found to be relatively heat-stable and dialyzable. As to the basic mechanism involved in the induction of polyp formation, it is suggested that the inducing factor (s) acts bimodally by inducing pedal disc development and by eliminating a head inhibitor originating from the basal end of the bud. The life history, and various aspects of medusa-formation and of vegetative reproduction in scyphozoans are reviewed and discussed with particular reference to rhizostome species. Special attention has been paid to some reports of larval metamorphosis controlled by marine bacteria.  相似文献   

3.
Studies were carried out to determine optimum conditions for the investigation of symbiotic zooxanthellae in vitro and to gain insight into factors influencing release of photosynthate by the symbionts. Zooxanthellae isolated from the reef coral Agaricia agaricites and incubated with an homogenate of host tissue release twice as much photosynthate as controls in seawater. The animal homogenate retained its stimulatory activity for 3 h at room temperature (ca. 26°C). Release of photosynthate was markedly influenced by time after isolation of algae from the host, variation in homogenate concentration, and prolonged exposure to homogenate. Release was not influenced by cell concentration, light intensity, or glycerol in the incubation medium. If zooxanthellae are labelled in vitro with glucose 14C, the principle product released is alanine 14C. The mechanism of action of homogenate on zooxanthellae in vitro is discussed in terms of its effect on algal cell membrane permeability. A preliminary fractionation of host homogenate is described.  相似文献   

4.
We examined the ability of Capnella gaboensis Verseveldt, 1977 (Coelenterata: Octocorallia: Alcyonacea: Nephtheidae) to utilize heterotrophic food sources, and the importance of heterotrophic nutrition and photosynthesis in its diet, by using preserved material and histological sections of field-collected specimens and by means of laboratory experiments in which coral branches were fed with 14C-labelled food of different sizes. The study was conducted from April 1982 to August 1984. C. gaboensis receives nutrition from the photosynthesis of its symbiotic zooxanthellae, Symbiodinium sp., and from heterotrophic sources. Up to 10% of the algal photosynthate was translocated to the animal-host tissues. The contribution of translocated carbon from the zooxanthellae to the daily respiratory carbon requirement of the animal was estimated to be well below 50% in all seasons except in the summer of 1983–1984, indicating that the coral must rely on additional sources of nutrition (i.e., heterotrophy) for most, if not all, of the year. Field (Sydney Harbour: 33°50S; 151°15E) and laboratory observations and experiments indicated that this coral probably feeds upon zooplankton, small particulate matter and dissolved organic matter.  相似文献   

5.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

6.
Rhopilema nomadica is an Indopacific scyphomedusan, which has migrated into the eastern Mediterranean in recent years. Large aggregations of the medusae were recorded in Haifa Bay, Israel, reaching 5.5×105 medusae per square nautical mile during summer 1989. The life cycle ofR. nomadica from planula to young medusa is described. Fertilization is external and planulae are formed within a few hours at 20°C. After settlement, polyps were fed withArtemia sp. nauplii and developed into polydisc strobilae within 45 d. The strobilation process was completed within 7 d, and the liberated ephyrae developed into young medusae within 2 mo. Asexual reproduction occurred mainly via podocyst formation. The population explosion ofR. nomadica could be attributed to its high reproductive potential.  相似文献   

7.
Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 m3 at 116 m to 406 m3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c 2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c 2 eight times higher at 160 m. At all depths the chl c 2 content per cell was higher than for chl a. The formation of chl a/chl c 2 complexes as light harvestor is discussed. Light harvesting, with chl c 2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c 2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.  相似文献   

8.
R. E. Black 《Marine Biology》1972,16(2):134-137
Levels of DNA, RNA, and protein were measured in scyphistomae of the scyphozoans Aurelia aurita and Chrysaora quinquecirrha during strobilation. In synchronously developing populations of A. aurita, the amount of DNA per polyp increases 41 to 260% during strobilation, whereas RNA and protein remain relatively constant. The RNA/DNA ratio drops by about 50% during strobilation in both C. quinquecirrha and A. aurita, and protein/DNA decreases by 50% in A. aurita. Specific RNA reserves are probably not accumulated in advance of strobilation, since strobilation is blocked immediately in both species by 1 to 3 g/ml actinomycin D. The size and DNA content of polyps are usually increased by prolonged incubation at temperatures of 12° to 15°C, which facilitates strobilation; however, the RNA/DNA and protein/DNA ratios of such polyps are not significantly increased by the cold conditioning.Contribution No. 472 from the Virginia Institute of Marine Science.  相似文献   

9.
The nutrient status (limitation vs sufficiency) of dinoflagellates (zooxanthellae) symbiotic with reef corals in Bermuda was assessed in 1989 and 1990 by measuring the enhancement of dark carbon fixation with 20 M ammonium by isolated symbionts. A colony ofMadracis mirabilis was kept in the laboratory and fed daily or starved for one month. Symbionts from fed portions of the colony had ammonium-enhancement ratios (NH 4dark + ; SWdark;SW=seawater without added ammonium) similar to those of the original field population (1.2 to 1.3). Ammonium-enhancement ratios increased with starvation of the host (x1.7) as did values forV D:V L [(ammonium dark rate-seawater dark rate): light rate in seawater]. Both parameters indicated decreasing nitrogen sufficiency of the algae when the host was not fed, but starvation appeared to affect these algae less than symbionts of sea anemones. Field samples of zooxanthellae fromM. mirabilis (Three Hill Shoals and Bailey's Bay Flats) yielded results similar to those for fed corals, but those taken from Bailey's Bay Flats in May 1990 yielded exceptionally high values for enhancement (>3) andV D:V L indicating pronounced nitrogen limitation at the time of sampling. We sampled zooxanthellae from populations ofMontastrea annularis at 8 m (Three Hill Shoals) and 24 m (Soldier's Point) depths. Enhancement andV D:V L values for zooxanthellae from the 8 m corals were density-dependent: symbionts from corals with normal symbiont densities displayed the most nitrogen limitation (enhancement values=1.4 to 2.0), while those from bleached corals with lower density exhibited enhancement andV D:V L values typical of nitrogen-sufficient algae. Symbionts isolated from the 25 m corals yielded the highest values, and appeared to exhibit the least nitrogen-sufficiency for this species.  相似文献   

10.
The estuarine macroalga Enteromorpha prolifera was collected from Coos Bay, Oregon, USA during 1981, and its release of photosynthate as dissolved organic carbon (DOC) was studied using 14C as a tracer. During photosynthesis in 30 S sea water, with a fixation rate averaging 7.37 mg C g-1 dry wt h-1, release ranged from 0.13 to 0.57 mg C g-1 dry wt h-1 and from 1.65 to 6.23% of total fixed carbon. Release of DOC appears to be linear with time over 3 h. As exposed algae become increasingly desiccated, their photosynthetic rates decline dramatically, but upon reimmersion the highly desiccated algae lose a larger fraction of their fixed carbon than the slightly desiccated algae. This loss comes in a pulse release of DOC over the initial 15 min, followed by declining release rates. The pulse loss due to rainfall is 5 times greater than that due to tidal resubmergence, and may briefly exceed the prior photosynthetic rate. Although lowering the salinity from 30 to 5 does not substantially alter photosynthetic rates, it does increase the DOC release range up to 1.02 mg C g-1 dry wt h-1 and 16.10% of fixed carbon. Heterotrophic microbes from the algal habitat readily use the available DOC at about 15% h-1.  相似文献   

11.
Carbonic anhydrase (CA, EC 4.2.1.1) activity was detected in 22 species of tropical cnidarians which contain endosymbiotic dinoflagellates (=zooxanthellae). CA activity was 2 to 3 times higher in animal tissue than in algae and ca. 29 times higher in zooxanthellate than azooxanthellate species. It was also higher in the zooxanthellate tentacle tissue than in the azooxanthellate column tissue of the anemone Condylactis gigantea. CA was therefore significantly related to the presence of endosymbiotic algae. Further results indicated that CA functions in the photosynthetic carbon metabolism of zooxanthellate cnidarians as evidenced by (1) low CA activity in shade-adapted and deep water colonies compared to the more productive shallow water, light-adapted colonies of the coral Stylophora pistillata, and (2) the 56 to 85% reduction in photosynthetic carbon assimilation by zooxanthellae in situ in the presence of Diamox, an inhibitor of CA. Although CA has been proposed to function in calcification, its association with zooxanthellae and photosynthetic activity in both calcifying and non-calcifying associations suggests a role in photosynthetic metabolism of algal/cnidarian symbioses. It is proposed that CA acts as a CO2 supply mechanism by releasing CO2 from bicarbonate, and enabling zooxanthellae to maintain high rates of photosynthesis in their intracellular environment.  相似文献   

12.
To determine how the animal and algal components of the symbiotic sea anemone Aiptasia pulchella respond to changes in food availability and culture irradiance, sea anemones from a single clone were maintained at four irradiance levels (320, 185, 115, and 45 E m-2 s-1) and either starved or fed for 5 wk. Changes in protein biomass of sea anemones maintained under these conditions were not related to the productivity of zooxanthellae, since the protein biomass of fed A. pulchella decreased with increase in irradiance and there was no difference in protein biomass among starved sea anemones at the four irradiance levels. Except for the starved high-light sea anemones, the density of symbiotic zooxanthellae was independent of culture irradiance within both starved and fed. A. pulchella. Starved sea anemones contained over twice the density of zooxanthellae as fed sea anemones. Within both starved and fed individuals, chlorophyll per zooxanthella increased with decreasing culture irradiance while algal size remained constant (in fed sea anemones) at about 8.80 m diameter. Chlorophyll a: c 2 ratios of zooxanthellae increased with decreasing culture irradiance in zooxanthellae from starved sea anemones but remained constant in zooxanthellae from fed sea anemones. As estimated from mitotic index data, the in situ growth rates of zooxanthellae averaged 0.007 d-1 and did not vary with irradiance or feeding regime. Photosynthesis-irradiance (P-I) responses of fed A. pulchella indicated an increase in photosynthetic efficiency with decreasing culture irradiance. But there was no consistent pattern in photosynthetic capacity with culture irradiance. Respiration rates of fed sea anemones also did not vary in relation to culture irradiance. The parameter I k , defined as the irradiance at which light-saturated rates of photosynthesis are first attained, was the only parameter from the P-I curves which increased linearly with increasing culture irradiance. The daily ratio of net photosynthesis to respiration for A. pulchella ranged from 1.6 to 2.8 for sea anemones maintained at the three higher irradiances, but was negative for those maintained at 45 E m-2 s-1. Since the final protein biomass was greatest for sea anemones maintained at the lowest irradiance, these results indicate that sea anemone growth cannot be directly related to productivity of zooxanthellae in this symbiotic association.  相似文献   

13.
Very little information exists on the effects of nitrate on corals, although this is the major form in which nitrogen is prescrit in tropical eutrophie coastal waters. In this study we incubated nubbins ofPorites porites and explants ofMontastrea annularis in laboratory photostats illuminated by halide lamps, with concentrations of nitrate of 0, 1, 5 and 20 M, for 40 and 30 d, respectively, At the end of this period it was found that the population density of the zooxanthellae had increased significantly with increased nitrate concentration, suggesting nitrogen limitation of the growth rate of zooxanthellae in the control group. There were also significant increases in the amount of chlorophylla ande 2 per algal cell, in the volume of the algal cells, and in the protein per cell. Overall, the protein per unit surface increased, but this was attributable solely to increased algal protein: there was no significant change in host protein. Maximum gross photosynthesis normalized to surface area was enhanced by nitrate addition, reflecting the increase in algal population density. There was no change when normalized on a per cell basis. Respiration rate normalized to protein content was decreased by nitrate. The most dramatic change was in the rate of skeletogenesis, which decreased by in both species when exposed to nitrate enrichment. A model is presented which suggests that the diffusion-limited supply of CO2 from surrounding seawater is used preferentially by the enlarged zooxanthellae population for Photosynthesis, thereby reducing the availability of inorganic carbon for calcification. It is concluded that enhanced nitrate levels in tropical coastal waters will have a hitherto unrecognized effect on the growth rate of tropical coral reefs.  相似文献   

14.
Symbiotic dinoflagellates, Symbiodinium microadriaticum (=zooxanthellae), may gain access to aposymbiotic hosts (i.e., those lacking zooxanthellae) by chemosensory attraction of the motile algae by the potential host or via an intermediate host. Laboratory experiments showed that motile zooxanthellae were attracted to intact aposymbiotic host animals, but not to starved symbiotic hosts. Fed symbiotic hosts and brine shrimp (Artemia sp.) nauplii also attracted motile zooxanthellae. The attraction of these zooxanthellae was directly correlated with nitrogen levels in the seawater surrounding the hosts; thus ammonia and possibly nitrate could be atractants. Brine shrimp nauplii, acting as intermediate hosts actively ingested both motile and non-motile zooxanthellae. the ingested zooxanthellae tended to remain morphologically unaltered during and after passage through the gut of the brine shrimp. Capture and ingestion of brine shrimp containing zooxanthellae by aposymbiotic scyphistomae of the jellyfish Cassiopeia xamachana led to infection of the scyphistomae with zooxanthellae. Zooxanthellae isolated from 17 different species of coelenterates and molluscs could be transferred via brine shrimp to the endodermal cells of the scyphistomae. However only 10 of these isolates persisted to establish a permanent association with C. xamachana. Scyphistomae in suspensions of motile zooxanthellae responded by a classical coelenterate feeding response, which may facilitate ingestion of the potential symbionts and establishment of a symbiosis.  相似文献   

15.
Elysia tuca Marcus were collected from the Florida Keys (USA) during 1978–1979, with the aim of clarifying the physiological significance of their kleptoplastids by studying variations in the chlorophyll content of the slugs. The chlorophyll levels in the field populations varied seasonally, with peak levels in autumn. Peak reproductive activity coincided with maximum chlorophyll levels, carbon fixation, and rate of macromolecular conversion of kleptoplastid (= symbiotic chloroplast) photosynthates. Changes in chlorophyll level are probably controlled by rate of feeding, which is in turn governed by such factors as algal density and climatic factors (light and temperature). Chlorophyll level and individual weight varied with location, with significant differences between sites in the Upper Keys and the Lower Keys. Environmental factors control benefits of kleptoplastid retention, and suggest that photosynthate yield is an important subsidy of reproductive output.  相似文献   

16.
The soft coral Heteroxenia fuscescens (Ehrb.) and its isolated zooxanthellae (endosymbiotic dinoflagellates) were investigated with particular regard to uptake and utilization of exogenously supplied 14C-acetate in the light and in the dark. The incorporation of 14C from 14C-acetate into the host tissue and into the zooxanthellae was consistently much higher in the light than in the dark. The incorporated 14C-acetate was rapidly metabolized by the host and algae and was recovered from different assimilate fractions. The major proportion of radiocarbon from metabolized 14C-acetate was located in host tissue. The CHCl3-soluble fraction composed of diverse lipids showed the strongest 14C-labelling. Zooxanthellae isolated prior to incubation accounted for about 80% of the acetate incorporation recorded for zooxanthellae in situ (in vivo). It is concluded from a comparison of acetate incorporation and conversion under light and dark conditions that most of the lipid reserve of the host tissue originates from fatty acids, which are synthesized within the algal symbionts and are then translocated to the heterotrophic partner via extrusion. The acetate units needed for lipid synthesis are obtained by absorption of free acetate from dissolved organic matter (DOM) in the seawater as well as by photosynthetic assimilation of inorganic carbon. Thus, in H. fuscescens, lipogenesis is operated as a light-driven process to which the zooxanthellae considerably contribute assimilatory power by performing fatty acid synthesis and translocation of lipid compounds to their intracellular environment (host cell). A metabolic scheme is proposed to account for the different pathways of carbon conversion observed in H. fuscescens. The incubations took place in August 1980 and the analytical part from October 1980 to January 1984.  相似文献   

17.
Studies on 14CO2-assimilation in marine rhodophyceae   总被引:2,自引:0,他引:2  
Experiments on enzymatic (in vitro) and in vivo CO2-fixation using a variety of marine Rhodophyceae such as Porphyra umbilicalis (L.) J.Ag., Rhodomela confervoides (Huds.) Silva, Corallina officinalis L. and Chondrus crispus Stackh. revealed that carbon assimilation in the Rhodophyceae is almost exclusively performed by photosynthesis via ribulose-1, 5-di-phosphate carboxylase, whereas light-independent CO2-fixation via -carboxylation by phosphoenolpyruvate carboxykinase scarcely exceeds 1% of the total carbon fixation potential of the plants. Activity of phosphoenolpyruvate carboxylase could not be detected. With respect to the main accumulation products of photosynthetic CO2-fixation, the Rhodophyceae investigated are not uniform: Corallina officinalis L., Rhodymenia palmata (L.) Grev., and Gigartina stellata (Stackh.) Batt. have been found to accumulate 14C in the neutral compound floridoside (=2-O-glycerol--D-galactopyranose), whereas Delesseria sanguinea (Huds.) Lamour., Ceramium cubrum (Huds,) C.Ag., and Rhodomela confervoides (Huds.) Silva, representing members of the Delesseriaceae, Ceramiaceae and Rhodomelaceae, respectively, do not photosynthesize floridoside, but show intense 14C-labelling in an acidic constituent, mannosidoglycerate (= digeneaside). This compound is reported for the first time as a rapidly 14C-labelled and accumulated photosynthate in a variety of red algal species exclusively belonging to the Ceramiales.  相似文献   

18.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

19.
Diel patterns of 14C-bicarbonate incorporation in>5 m algal communities were compared with those in cyanobacterial populations of Synechococcus spp. (0.6 to 1.0 m), collected from the surface and/or chlorophyll maximum at three stations in the Northwest Atlantic Ocean (a neritic front; in Warm-Core Eddy 84-E; and Wilkinson's Basin) from 21 July to 8 August, 1984. Cell constituents were chemically separated into four fractions: lipids, low molecular weight (LMW) metabolites, polysaccharides/nucleic acids, and proteins. The in situ diel pattern of 14C assimilation was virtually the same for >5 m algal communities adapted to different environments. Protein synthesis appeared to continue at a reduced rate at night using energy derived from the catabolism of polysaccharides and the mobilization of LMW compounds. Synechococcus spp. populations exhibited inherent physiological differences in their in situ diel pattern of carbon fixation from that in>5 m algal communities taken from the same water mass. There was no nighttime protein-synthesis in Synechococcus spp. The relative proportion of 14C-protein remained constant over night, while that of 14C-polysaccharides/nucleic acids declined and that of labelled LMW metabolites increased. Daytime light-intensity manipulations did not alter the diel pattern of carbon fixation in any of the>5 m algal assemblages, while changes in the carbon metabolism of surface and shadeadapted Synechococcus spp. populations could be rapidly induced by altering the light intensity.Bigelow Laboratory Contribution No. 86004  相似文献   

20.
The usefulness of Fluorinert for the extraction of Acropora formosa polyp tissue and zooxanthellae was demonstrated. The latter remain intact, with no leakage of metabolites, and the polyp tissue can be extracted in a minimal volume. Intact A. formosa and its isolated zooxanthellae were incubated in the light with sodium [14C]bicarbonate for 5 s to 15 min and the kinetics of carbon-14 fixation was determined. The isolated zooxanthellae showed a linear response for carbon fixation, whilst the zooxanthellae in the intact association showed a lag period of 1 to 2 min, containing only 12% of the total fixed carbon in the first 1 min. After 10 min, the distribution of fixed carbon between the symbiotic partners was approximately even and the total carbon fixed was in a range similar to that fixed by the isolated zooxanthellae. A pulse-chase experiment showed rapid movement of fixed carbon from the polyp tissue to the zooxanthellae after the 30 s pulse. The paper discusses two possible explanations for the observed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号