首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Critical load exceedances have been used as an effects-related parameter for guiding international air emission control negotiations. High-resolution critical load data are combined with low-resolution deposition data.This article shows that doing so systematicallyunderestimates `true' critical load exceedances as obtainedfrom combining critical load and deposition data of identicalhigh spatial resolution. 95th percentile critical loadexceedances in EMEP grids based on high resolution depositiondata are 60 and 150% higher (mean values for nutrientnitrogen and acidity, respectively) than critical loadexceedances based on the low resolution EMEP depositionmodel. The latter are used in international negotiations. Differences in individual EMEP grid squares vary betweeninsignificantly different from zero and 340%, depending onregional deposition and critical load characteristics andcritical load types (nutrient nitrogen versus acidity).Exceedances based on high-resolution deposition values arealso compared to EMEP grid averages of these values forforests only. This comparison excludes the effect ofsystematically higher depositions to forests. Still, thescale difference of (averaged, low-resolution) deposition and(high-resolution) critical loads data yields underestimatesof the 95th percentiles by on average ca. 20%.These systematic errors due to the scale dependence should beborne in mind when interpreting effects of internationalemission control measures.  相似文献   

2.
Emissions of sulphur and oxidized nitrogen compounds in Europe have been reduced following a series of control measures during the last two decades. These changes have taken place during a period in which the primary gases and the wet deposition throughout Europe were extensively monitored. Since the end of the 1970s, for example land based sulphur emissions declined by between 90 and 70% depending on the region. Over the same period the total deposition of sulphur and its partitioning into wet and dry deposition have declined, but the spatial pattern in the reduction in deposition differs from that of emission and has changed with time. Such non-linearities in the emission-deposition relationship are important to understand as they complicate the process of assessing the effects of emission reduction strategies. Observed non-linearities in terrestrial sulphur emission-deposition patterns have been identified in north west Europe due to increases in marine emissions, and are currently slowing the recovery of freshwater ecosystems. Changes in the relative amounts of SO2 and NH3 in air over the last two decades have also changed the affinity of terrestrial surfaces for SO2 and have therefore changed the deposition velocity of SO2 over substantial areas. The consequence of this effect has been the very rapid reduction in ambient SO2 concentration in some of the major source areas of Europe, where NH3 did not change much. Interactions between the different pollutants, generating non-linearities are now being incorporated in long-range transport models to simulate the effects of historical emission trends and to provide projections into the future. This paper identifies non-linearities in emission deposition relationships for sulphur and nitrogen compounds in Europe using data from the EMEP long-rang transport model and measured concentration fields of the major ions in precipitation and of SO2 and NO2 in surface air.  相似文献   

3.
Erisman  J. W.  Hensen  A.  Fowler  D.  Flechard  C. R.  Grüner  A.  Spindler  G.  Duyzer  J. H.  Weststrate  H.  Römer  F.  Vonk  A. W.  Jaarsveld  H. v. 《Water, Air, & Soil Pollution: Focus》2001,1(5-6):17-27
Between 1993 and 1999 two EU funded projects wereexecuted aimed at (i) the development of drydeposition monitoring methods for core sites andlarge scale application, (ii) the installation andrunning of three core sites in Europe and (iii) the improvement and validation of models used forregional application. This article provides anoverview of the development of depositionmonitoring stations and the main results of thethree core sites, which were operated between1995 and 1998. Furthermore, the results of thedevelopment of a low cost monitoring system arepresented. Continuous measurements were made ofboth wet and dry deposition of sulphur andnitrogen components and base cations. The 4 yearsof data show a decrease in sulphur loads and notrend for the other components. It is shown thatthe surface affinities for sulphur depositionalso changed during the years, underpinning theneed for dry deposition monitoring. A conditionaltime average gradient system was successfullydeveloped and tested and provides a good meansfor low cost monitoring of dry deposition fluxes.The costs can be reduced by a factor of 3–4 without losing the accuracy of the annual average gas fluxes.  相似文献   

4.
A Chronology of Nitrogen Deposition in the UK Between 1900 and 2000   总被引:2,自引:0,他引:2  
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO 3 –N and NH 4 + –N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha–1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha–1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

5.
The critical loads concept is used by the UN-ECEConvention on Long Range Transboundary Air Pollution(CLRTAP) for setting pollution reduction targets.Increasing numbers of countries are adopting the SimpleMass Balance equation (SMB) to calculate critical loads ofacidifying S and N for forest soils. The equation is madeup of a series of mass balances each of which is used tocalculate a leaching flux. The assumptions in the SMBequation were investigated by testing its ability topredict current sulphur load and by comparing each of thecalculated leaching fluxes to measured rates. It was notpossible to predict current sulphur load at our sites usingthe SMB equation. The leaching tests demonstrated that,primarily due to its steady state assumptions, the SMBequation generates critical loads that are theoretical longterm estimates of risk, and are untestable. Thesimplifying assumptions sometimes lead to illogicalresults. Some of these can be improved by adding a final,simple but dynamic, calculation step to determine theexpected time until effects are observed. Theacceptability of combining annual average data, which bestapproximates steady state, with a biological indicator isquestionable. It is not possible to test critical loadscalculated using the SMB equation when applied with all ofits assumptions but it is possible to test its fundamentalapproach using non steady state data.  相似文献   

6.
Size resolved particle composition and nitric acid (HNO3)measurements from the ASEPS'98 experiment conducted in the BalticSea are used to provide observational evidence of substantialgas-particle transfer of oxidized nitrogen (N) compounds in themarine boundary layer. We then focus on the importance ofHNO3 reactions on sea salt particles in determining spatio-temporal patterns of N dry deposition to marine ecosystems.Modelling results obtained assuming no kinetic or chemical limiton HNO3 uptake and horizontally homogeneous conditions withnear-neutral stability, indicate that for wind speeds 3.5 – 10 ms-1 transfer of HNO3 to the particle phase to formparticle nitrate (NO3 -) may decrease the N depositionvelocity by 50%. We extend this research using the CHEM-COASTmodel to demonstrate that, in a sulphur poor environment undermoderate wind speeds with HNO3 concentrations representativeof those found in the marine boundary layer, inclusion ofheterogeneous reactions on sea spray significantly reducesmodelled NO3 - deposition in the near coastal zone.  相似文献   

7.
An ozone deposition module is being developed to allow the estimation of stomatal fluxes of ozone into a number of vegetation types. This model is designed to be linked into a regional chemical-transport model for use within the European Monitoring and Evaluation Programme (EMEP), to provide information on possible risks to vegetation across Europe. This paper investigates some characteristics of this deposition module, for sites in very different climate zones. The model results suggest that both stomatal and non-stomatal fluxes are comparable in magnitude.  相似文献   

8.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

9.
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO? 3?N and NH+ 4?N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha?1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha?1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

10.
The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in Denmark) and one deciduous forest (mountain birch in Finland). On average, themodel performs well for the Scots pine forest, if local inputdata are used. The daytime deposition rates are somewhat over-predicted at the Danish site, especially in the afternoon. The mountain birch data indicate that the generic parameterisationof stomatal responses is not very representative of this northernspecies. The module was also tested by using modelled meteorological data that constitute the input for a photochemical transport model.  相似文献   

11.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

12.
Major sulphur emission control programs have been implemented in North America, resulting in current emissions being ~30% less than those in 1980. However, the level of acidic deposition remaining is still unlikely to promote widespread recovery of aquatic ecosystems. The First-order Acidity Balance (FAB) model has been applied to south-central Ontario (285 lakes in the Muskoka River Catchment) to evaluate the need for further reductions in emissions. As a result of the past decline in deposition, the proportion of lakes with critical loads exceedance has dropped substantially; however, further reductions in sulphur and nitrogen emissions are required to eliminate critical loads exceedance. Based on bulk deposition of sulphate and nitrogen (41.1 mmolc m-2 yr-1 and 62.5 mmolc m-2 yr-1, respectively) for the period 1995–1999, 166 lakes (58.3%) exceedcritical loads. Even with full implementation of SO2 abatementprograms in Canada (achieved in 1994) and the United States (legislated for 2010), critical loads will be exceeded in a large proportion (46.6%) of the study lakes.  相似文献   

13.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha–1 y–1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of real world treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below4mMin rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha–1 y–1 adjusted for ambient deposition (8 kg N ha–1 y–1). The 16 and 64 kg N ha–1 y–1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   

14.
The purpose of this study is to evaluate cost-effective reduction strategies for nitrogen oxides (NO x ) in the Asian region. The source-receptor relationships of the Lagrangian “puff” model of long-range transportation, ATMOS-N, were used to calculate the wet/dry deposition of the nitrogen (N) in Asia. Critical loads of N deposition in Asia were calculated from the relationships between the critical load of sulfur (S) and balance of N in and out using the data of S critical load of RAINS-ASIA. The cost functions of N reduction of Asian countries were derived by the regression analysis with the data of cost functions of European countries used in RAINS. In order to assess the environmental impact, the gaps between N deposition and critical load of N were calculated. The emission of NO x was reduced in some cases of this model, and the changes of gaps between N deposition and critical load were observed as well as the changes of the reduction cost. It is shown that a uniform reduction of NO x emissions by countries in Asia is not cost-effective strategy.  相似文献   

15.
Simple bioenergetics models were used to derive annual nitrogen excretion rates of each seabird species occurring at colonies in the UK. These were combined with population distribution data and an estimated fraction of nitrogen volatilized to estimate the spatial distribution of NH3 emissions from seabird colonies at a 1 km resolution. The effect of these emissions on atmospheric NH3 concentrations and nitrogen deposition in the UK was assessed using the FRAME atmospheric chemistry and transport model. The total emission of NH3 from the UK seabird colonies is estimated at 2.7 kt yr–1. Emissions from seabirds are largely concentrated in remote parts of Britain, where agricultural and other anthropogenic emissions are minimal. Although seabirds account for less than 1% of total UK NH3 emissions (370 kt yr–1), their occurrence in remote areas and frequently large colony sizes results in seabirds providing a major fraction of the atmospheric nitrogen deposition for many remote ecosystems.  相似文献   

16.
Gas-phase atmospheric deposition wasevaluated in a screening level model of themultimedia environmental distribution of toxics(MEND-TOX). Algorithmic additions to MEND-TOXfor the estimation of gas-phase depositionvelocity over vegetated surfaces were analyzedusing recently published dry deposition fluxmeasurements for nitric acid. Model outputs arecompared to similar estimates from the NOAAmultilayer dry deposition model. Results of theevaluation indicate that MEND-TOX performs wellas a screening level model for the estimation ofgas-phase dry deposition velocity of nitric acidover soybeans. The present study expandsprevious laboratory results for organic speciesto include an inorganic species and open fieldand dry leaf, conditions.(On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency); (author for correspondence, e-mail  相似文献   

17.
18.
Numerous assumptions have been made over the past 17 years when calculating critical loads for soils, both for acidity (based upon base cation steady state mass balances (SMB)) and for N (eutrophication, based upon N mass balances), often without all the assumptions being explicitly stated. The tacit assumptions that the author believes to be implicit in the SMB approach are critically reviewed, with particular reference to upland regions where slope processes are highly significant. It is concluded that many of them cannot be justified, especially those that involve ignoring many key processes known to be important to biogeochemical cycling and soil evolution in upland catchments. The evidence presented suggests that critical loads of acidity and of N for soils should be based upon effective pollutant and, for acidity, also effective base cation deposition concentrations, rather than upon pollutant deposition fluxes. This is because of the dominant role of cation exchange equilibria, rather than weathering rate, in regulation of the pH and base status of the more acidification-sensitive soils, and because of the importance of transport down slope of base cations, alkalinity and N species.  相似文献   

19.
The concentration of water-soluble organic nitrogen (WSON) in precipitation has been measured at seven sites across the United Kingdom, over a period of 1–2 years, using protocols developed in a pilot study. Samples were collected over 1–2 weeks in continuously open funnels made of stainless steel, draining to a glass bottle, and were preserved during and after collection by the addition of thymol. After chemical analysis, samples were excluded from the long-term average if they showed signs of contamination (significant concentrations of K+ or PO4 3–). Two methods of measuring total dissolved N were used, persulphate oxidation and high-temperature chemiluminescence. The latter generally gave the larger values, and has been used to asses the organic component of dissolved N. The long-term data set confirms the original results from the pilot study - organic N contributes between 24 and 40% to the total annual wet deposition of dissolved N across the United Kingdom. The fraction of WSON was greatest at western sites, and was strongly correlated with ammonium concentrations. However, the seasonal pattern across all sites showed a late spring maximum for ammonium and nitrate, but a late summer maximum for WSON. The magnitude of the contribution of WSON to wet-deposited N has implications for the setting and assessment of critical loads for N deposition.  相似文献   

20.
The concentration of water-soluble organic nitrogen (WSON) in precipitation has been measured at seven sites across the United Kingdom, over a period of 1–2 years, using protocols developed in a pilot study. Samples were collected over 1–2 weeks in continuously open funnels made of stainless steel, draining to a glass bottle, and were preserved during and after collection by the addition of thymol. After chemical analysis, samples were excluded from the long-term average if they showed signs of contamination (significant concentrations of K+ or PO4 3?). Two methods of measuring total dissolved N were used, persulphate oxidation and high-temperature chemiluminescence. The latter generally gave the larger values, and has been used to asses the organic component of dissolved N. The long-term data set confirms the original results from the pilot study—organic N contributes between 24 and 40% to the total annual wet deposition of dissolved N across the United Kingdom. The fraction of WSON was greatest at western sites, and was strongly correlated with ammonium concentrations. However, the seasonal pattern across all sites showed a late spring maximum for ammonium and nitrate, but a late summer maximum for WSON. The magnitude of the contribution of WSON to wet-deposited N has implications for the setting and assessment of critical loads for N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号