首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对平煤某矿己15-24070(下)综放工作面瓦斯含量高、易超限影响安全生产的难题,采用COMSOL数值模拟软件建立三维抽采模型,结合固体力学、达西定律,研究了钻孔间距、钻孔直径对卸压范围和瓦斯压力衰减规律的影响,确定出合理抽采参数。在此基础上,提出己15-24070(下)综放工作面采用平行钻孔布置方式。现场实践表明:恰当布置钻孔间距、钻孔直径能够显著提高瓦斯抽采率,从卸压瓦斯抽采量角度考虑己15-24070(下)综放工作面钻孔间距3~5 m,直径0.1~0.133 m时,工作面顺层钻孔瓦斯抽采效率达到29%,抽采效果明显。  相似文献   

2.
潘三煤矿17181(1)运输顺槽顶板岩层含水丰富,下向穿层钻孔抽采17181(1)运顺瓦斯受岩层富水影响较大。为解决这一问题,结合潘三矿11-2煤顶板实际情况,分析了影响下向穿层钻孔抽采瓦斯的主要因素,提出了"先区域封水,后打抽采钻孔,再利用‘两堵一注’快速封孔法封孔"成套技术解决方案,形成了一种新型下向穿层瓦斯抽采钻孔封孔方法。经潘三矿17181(1)瓦斯综合治理巷现场实践证明,下向穿层抽采钻孔的瓦斯抽采纯量与抽采浓度均有大幅度提高,钻孔封孔效果良好。  相似文献   

3.
针对平煤十矿顺层抽采钻孔封孔不佳导致钻孔自然发火问题,用钻屑法试验研究巷道围岩应力分布特征,深入分析钻孔周围存在的漏气情况及导致钻孔自然发火的条件,并利用Comsol Multiphysics软件,数值模拟不同封孔深度与长度下钻孔周围漏风速度的分布状况,得到最优封孔参数,并探讨其对瓦斯抽采效果的影响。结果显示,距巷道0~7 m为破碎区,8~19 m为塑性区,20~28 m为弹性区;巷道周围破碎区、钻孔周围漏气圈、封孔材料漏风及抽采管路漏风为钻孔漏风区域,为钻孔自然发火提供通风供氧条件。研究表明:当封孔深度为17 m,封孔长度为8 m,最大抽采负压低于30 kPa时为最优封孔条件,既能保证抽采效果又能防止钻孔自然发火;封孔参数优化后单孔瓦斯抽采体积分数达到70%。  相似文献   

4.
针对我国煤矿绝大部分煤层属于渗透率低,地质条件复杂、瓦斯抽采效果差的特点,运用了FLUENT仿真软件,结合渗流力学理论,以薛湖矿二2煤层为工程背景,模拟顺煤层钻孔抽采的煤层压力、煤层渗透率、抽采负压、钻孔直径、抽采时间等因素,分析顺煤层钻孔瓦斯抽采规律,为类似顺煤层钻孔抽采设计提供科学依据;通过三种尺寸顺层钻孔工业实验,并从施工难易程度和经济效果以及抽放率的角度,确立了采用Φ75mm钻孔的抽放工艺;同时采用高压注水增大煤层透气性的方式进一步提高煤层瓦斯的抽放量。  相似文献   

5.
在研究煤层瓦斯抽采时,假定煤岩为具有孔隙裂隙的双重介质,在运动方程、连续性方程和辅助方程基础上,以煤岩体应变为耦合媒介建立了考虑裂隙瓦斯渗流、微孔隙吸附瓦斯解吸扩散和煤岩变形的渗流模型.借助多物理场分析软件COMSOL Multiphysics,将模型转化为偏微分方程组,结合沙曲矿24305工作面瓦斯赋存条件进行分析求解.结果表明,进行煤层瓦斯预抽时,抽采初期瓦斯压力下降较快,抽采孔间距对抽采效果影响比较显著,距离抽采孔越远瓦斯压力下降越慢,抽采时瓦斯渗流速度变化可分3个阶段.参考模拟结果现场布置孔距为6m的顺层钻孔,抽采稳定时瓦斯纯量达5~7 m3/min,抽采效果比较理想.  相似文献   

6.
为确定穿层钻孔有效抽采半径,提出基于钻孔瓦斯自然涌出规律的测定方法。利用COMSOL Multiphysics软件分析钻孔周围瓦斯流动规律;根据模拟结果及煤层瓦斯流动理论,建立钻孔瓦斯自然排放影响圈内瓦斯含量、瓦斯涌出量和残存瓦斯量之间的函数关系式,提出以钻孔瓦斯自然涌出有效影响半径代替抽采负压影响下的有效抽采半径;在鹤壁三矿、十矿和古汉山矿进行现场实测。结果表明:有效抽采半径内,瓦斯压力呈线性分布;受钻孔周围煤体蠕变卸压影响,瓦斯自然涌出具有明显的阶段性特征,确定的有效抽采半径最大可达4 m,研究结果符合实际。  相似文献   

7.
为获得最佳瓦斯抽采效果,研究不同钻孔孔径与塑性区范围及抽采效果之间关系,基于弹塑性理论,采用Comsol软件模拟嘉禾矿2254底板巷上穿层钻孔周围煤体塑性区范围分布,修正塑性区半径理论推导公式,得到抽采钻孔混合流量、纯流量和浓度,分析钻孔周围煤体不同塑性区范围下瓦斯抽采效果。结果表明:钻孔孔径越大,塑性区范围越大,抽采钻孔卸压范围越大;若不考虑其他因素,钻孔孔径越大,瓦斯抽采效果越好;通过对比塑性区半径模拟值与计算值,修正塑性区半径公式,该公式适用于浦溪煤矿;随钻孔塑性区范围增加,钻孔瓦斯抽采流量逐渐增加,但瓦斯流量相对钻孔塑性区半径差变化率先增大后减小。研究结果可为提高矿井瓦斯抽采效果提供理论参考。  相似文献   

8.
针对顺层瓦斯抽采过程中,因钻孔形变较大、封孔长度不足及封孔方法不合理等因素造成抽采钻孔及其周围煤体漏风严重、抽采瓦斯浓度偏低、流量衰减速度较快及稳定性差等技术难题,基于多孔介质渗流理论、流体平衡理论、"固封液-液封气"钻孔密封技术原理,研究了承压密封液在煤层钻孔内的径向渗流规律,建立了不可压缩流体径向驱气稳定渗流物理模型、密封液径向渗流运动数学方程及相关参数计算公式,进而提出了固液耦合壁式密封顺层瓦斯抽采技术。结果表明,采用固液耦合壁式密封技术可对抽采钻孔及周围煤体裂隙实施动态密封,使得瓦斯抽采过程浓度稳定,单孔平均浓度提高4~5倍,平均抽采瓦斯体积分数达到89%以上,显著提高了本煤层瓦斯的抽采效率。  相似文献   

9.
径向强力膨胀法封孔提高抽采效果技术研究   总被引:1,自引:0,他引:1  
通过分析钻孔周围煤体在地应力作用下的变形与裂隙发育规律,结合鹤煤三矿原采用的瓦斯抽采钻孔封孔工艺,发现原采用的瓦斯抽采钻孔封孔工艺存在影响抽采瓦斯体积分数与效果的因素。确定合适的封孔材料需要满足4个主要的性质特征,提出了径向强力膨胀法封孔提高抽采效果技术。使用RFPA3D数值模拟软件研究了孔壁周围煤体裂隙发育范围,据此确定了封孔深度工艺参数,并在鹤煤三矿进行了现场对比试验。结果表明,与原封孔技术相比,应用径向强力膨胀法封孔技术封孔成功率高,抽采瓦斯体积分数和抽采纯量均有大幅度提高。  相似文献   

10.
针对潘三矿17181(1)运输顺槽面临的煤与瓦斯突出问题,结合11-2煤层透气性系数低、裂隙水发育等特点,为提高穿层钻孔条带预抽效率,运用掏穴增透和深孔松动爆破进行增透的同时,通过采用钻场注浆防水,钻孔自动排水等措施,降低水对穿层钻孔条带预抽煤巷瓦斯的影响。通过效果考察对比,结果表明:抽采69天后,累计抽采瓦斯14.91万立方,抽采率达到51.5%,平均抽采浓度35%,百孔抽采纯量1.2m3/min,能够达到条带预抽瓦斯消突的目的。  相似文献   

11.
钻孔的有效抽采半径是在矿井瓦斯抽采设计中的一个关键性参数。准确测定钻孔的有效抽采半径,有利于合理布置瓦斯的抽采钻孔,实现最佳设计、最小工程量和最优抽采效果。根据实际煤层的存在条件,首先采用压降法对矿井试验区内穿层抽采钻孔有效抽采半径和水力冲孔抽采钻孔有效抽采半径进行实测。然后通过Comsol Multiphysics数值模拟软件建立穿层钻孔瓦斯抽采的数值计算模型,所得模拟结果与现场实测数据基本一致。这证明了现场实测结果的正确性和方法的可靠性。该钻孔的有效抽采半径的测定结果可为金牛建业煤矿技改井二1煤层预抽煤层瓦斯的钻孔设计提供参考。  相似文献   

12.
颜爱华 《安全》2014,35(9):4-7
利用煤岩体变形理论以及煤层瓦斯流动,建立了符合鹤煤十矿的顺层钻孔抽采气固耦合模型,并利用Comsol Multiphysics数值仿真软件模拟了瓦斯在煤体内部运移规律,通过对模拟结果和实测结果对比分析,得出该煤层顺层瓦斯抽采钻孔的合理钻孔长度为70m,为以后瓦斯抽采工作提供了重要依据。  相似文献   

13.
基于顺层抽采钻孔固气耦合模型,采用COMSOL对钻孔直径、煤层物性参数及抽采参数三类因素进行了模拟分析,并运用灰关联分析方法确定了顺层钻孔瓦斯抽采有效半径的主控因素。研究表明:煤层初始瓦斯压力与煤体初始渗透率为有效半径的主控因素,抽采时间次之,钻孔直径与有效抽采负压的变化对有效半径的影响甚微;提高瓦斯抽采有效半径的首要任务是通过技术手段卸压、增透,其次要把握合理的预抽时间。  相似文献   

14.
为提高瓦斯抽采钻孔的密封效果,通过普通硅酸盐水泥、硫铝酸钙水泥、自制高倍率膨胀剂等材料的复配,研发出一种膨胀率高、速凝、高强度的钻孔密封材料。实验室测试材料的流动度、凝固时间、抗压强度等性能指标;在井下现场同常见的钻孔密封材料开展钻孔密封的对比试验。实验室测试结果表明:该材料适合瓦斯抽采钻孔的密封;在井下穿层钻孔密封试验中,该材料密封的钻孔比应用马丽散材料密封的钻孔瓦斯抽采体积分数可提高18%~24%,抽采速率可提高50%~80%。井下顺层钻孔密封试验结果表明:使用该材料,在2个月内平均瓦斯抽采体积分数达71.3%,比普通硅酸盐水泥密封的钻孔平均提高约17.4%。  相似文献   

15.
为研究穿层钻孔倾角与煤层气抽采效果的关系,基于钻孔围岩应力分布规律及瓦斯流动规律的相关研究,分别从孔卸压效果、钻孔瓦斯流动情况及钻孔抽采长度三方面探讨了钻孔倾角如何影响煤层气抽采效果,并给出了钻孔倾角对煤层气抽采影响的数学模型。经理论分析及现场试验对比,结果表明:钻孔围岩应力和钻孔倾角间存在三角函数关系,围岩应力分布的不同导致钻孔周围煤层透气性的改变;随钻孔倾角的减小,煤层段钻孔长度增加,钻孔暴露煤体增大,有助于煤体瓦斯的解析。且钻孔与煤层割理交集变大,瓦斯流通通道增加;钻孔倾角对煤层气抽采效果有着不可忽视的作用。  相似文献   

16.
为研究钻孔瓦斯抽采过程中瓦斯运移机制,基于瓦斯渗流扩散方程,探讨钻孔周围不同区域煤体变形和渗透率动态变化,推导出钻孔周围卸压区和非卸压区瓦斯流动耦合方程。根据某矿己15-31010工作面煤体物性参数建立几何模型,利用COMSOL Multiphysics有限元分析软件对耦合方程进行数值求解。结合模拟结果分析煤体形变、渗透率动态变化、钻孔周围瓦斯压力之间的耦合关系。对相关参数模拟结果进行现场抽采效果验证。结果表明,在瓦斯抽采过程中,煤体瓦斯压力随着时间推移逐渐降低,沿钻孔中心向四周方向,瓦斯压力在卸压区迅速增加,在非卸压区增速逐渐变缓,最终趋于稳定;煤体渗透率在钻孔周围呈现非对称V字型变化规律;卸压区的煤体变形较大,变形量在远离钻孔的方向上逐渐减小;模拟结果与现场抽采效果基本吻合。  相似文献   

17.
为了提高瓦斯抽采效果,以西沟煤矿5315工作面注气瓦斯抽采方案为工程背景,开展注CO2促抽煤层瓦斯模拟研究。通过对注CO2驱替煤层瓦斯机理研究,结合注气瓦斯抽采过程中的气体运移场和煤体变形场的耦合关系,建立了注CO2促抽瓦斯固气耦合模型;利用COMSOL Multiphysics软件模拟了工作面注气瓦斯抽采,对比分析了注气瓦斯抽采与本煤层顺层钻孔抽采的瓦斯抽采效果,论证了煤层注CO2促抽煤层瓦斯工艺的可行性与有效性。研究结果表明:在工作面瓦斯抽采90 d后注入CO2,对瓦斯抽采的促抽效果明显,煤层瓦斯压力降至0.46~0.49 MPa,瓦斯含量降低至4.22 m3/t;在90 d后注入CO2促抽煤层瓦斯,在瓦斯抽采至第180 d时,抽采效果较钻孔瓦斯抽采明显提高,煤层瓦斯压力降低了7.84%~9.26%,残余瓦斯含量减少了18.63%。通过工程实测可知,5315工作面在注入CO2促抽煤层瓦斯抽采后的瓦斯压力与瓦斯含量分别降低至0.48 MPa和4.76 m3/t,有效降低了煤与瓦斯突出的危险性。  相似文献   

18.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

19.
针对顺煤层抽采钻孔在抽采过程中由于钻孔断面变形缩小导致抽采流量和浓度低下的问题,采用FLAC~(3D)软件构建基于蠕变规律的钻孔煤体形变模型,对比分析常规和预置筛管钻孔周围煤体的蠕变位移和塑形区变化情况;提出预置筛管抽采封孔技术以提高孔壁支护力、改善钻孔抽采断面,并进行工业验证。研究表明:顺层抽采钻孔完孔后,孔壁受环向压力的影响,钻孔周围煤体呈现出向钻孔方向蠕变挤压特性,而且筛管钻孔相较常规钻孔形变量明显变小;现场采用预置筛管抽采封孔技术后,相较常规封孔技术,抽采65天时钻孔抽采量提高191%,抽采浓度提高137%,抽采效率提高显著。  相似文献   

20.
以提高瓦斯抽采效果为目标, 某矿Ⅲ4423工作面为研究对象,采用理论分析、 数值模拟、现场试验等研究方法,研究了顶板高位钻孔条件下瓦斯抽采的主要技术参数 ,数值模拟出高位钻孔抽采瓦斯前采空区的瓦斯分布情况与运移规律,以及负压分别为 8、10 kPa时的高位钻孔瓦斯抽采效果。依据瓦斯流动“O”型圈理论与FLUENT数值模拟 分析,优化设计高位钻孔抽采瓦斯工艺参数并进行现场试验。结果表明:当高位钻孔抽 采负压为8 kPa、终孔位置调整到采空区裂隙带回风巷侧15~35 m范围内时,高位钻孔抽 采瓦斯效果最佳,采空区内瓦斯最高浓度明显降低,单个钻场最大抽采瓦斯量为19 821.74 m3,钻孔瓦斯浓度稳定在 20%~30%之间,最大值达到50%,实现了工作面有效 治理瓦斯和安全生产的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号