首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaching potential of heavy metals from a roadway embankment constructed of fly ash and soil mixture was studied. Leaching of eight environmentally concerned metals Ag, As, Ba, Cd, Cr, Hg, Pb, and Se from the fly ash–soil mixtures was examined through batch leaching test and column leaching test. The batch leaching test results showed that the fly ash meets the local regulatory standards for beneficial use of nonhazardous wastes. The column leach test revealed that only Ba, Cr, and Se were detectable in the effluents. The peak concentration of Ba in the effluents was much lower than the US EPA Primary Drinking Water Regulations’ maximum contaminant level (MCL). The peak concentrations of Cr and Se exceeded the MCLs only in the initial flush stage and quickly decreased to below the MCLs. Results of this study suggest a great potential for fly ash to be used in roadway embankments to enhance their mechanical properties, reduce the use of soil, and avoid the disposal of fly ash as waste.  相似文献   

2.
Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.  相似文献   

3.
This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 °C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.  相似文献   

4.
An extremely acidic, heavy metal-rich sludge (pH=-1.2) was scrubbed with a Class-F fly ash in order to simultaneously neutralize the acidity and stabilize the heavy metals contained in both wastes. This paper outlines the leaching behavior of the aggregate material generated by scrubbing. For proper fly ash/sludge ratios, the fly ash acted as an outstanding neutralizer for the acidic waste. Leaching of heavy metals from the aggregate samples was below the environmental limits within a pH range between 3 and 9. Subsequent washing of the leached aggregate with acidic CALWET solutions did not result in an additional release of heavy metals. It is proposed that coordinative bonding of the metal cations onto neutral surface sites and electrostatic adsorption led to stabilization of the heavy metals within the aggregate structure below hydrolysis pHs.  相似文献   

5.
In Japan the volume of municipal solid waste is reduced by incineration, with fly ash and bottom ash disposed in controlled landfills. The leachability of anions and heavy metal cations, Zn, Cu and Pb, from MSW fly ash and bottom ash at different pHs was examined using batch- and column-leaching tests. The MSW ashes had a high capacity for neutralizing acids. Behaviour during leaching depended on the pH of the solution. For the volumes applied, the leachabilities of MSW fly ash were very similar at pHs from 3 to 6. Due to its amphoteric nature, Pb is leachable at pHs of approximately 10 or more, with leachate concentrations of about 3 and 3-10mg/L for the fly ash and bottom ash, respectively, much higher than for Zn and Cu. Pb concentrations for most leaching solutions were 1 and 3mg/L for the fly ash and bottom ash, respectively. Zn, and Cu leached at low concentrations for solutions of pH 3-6. Na and K ions leached at high concentrations of approximately 5000 mg/L in the first batch leaching test, decreasing to 10mg/L by the fourth leach. Ca and Mg ions leached more gradually than Na and K. Cl(-) and SO(4)(2+) ions were the major anions in the MSW ash. The high pH and cation leaching are expected to have negative impacts on the performance of clay liners.  相似文献   

6.
The chemical composition and the leachability of heavy metals in municipal solid waste incinerator (MSWI) fly ash were measured and analysed. For the leachability of unstabilized MSWI fly ash it was found that the concentrations of Pb and Cr exceeded the leaching toxicity standard. Cementitious solidification of the MSWI fly ash by Na2SiO3-activated ground granulated blast-furnace slag (NS) was investigated. Results show that all solidified MSWI fly ash can meet the landfill standards after 28 days of curing. The heavy metals were immobilized within the hydration products such as C-S-H gel and ettringite through physical encapsulation, substitution, precipitation or adsorption mechanisms.  相似文献   

7.
The leaching behavior of dioxins from landfill containing bottom ash and fly ash from municipal solid waste incineration has been investigated by leaching tests with pure water, non-ionic surfactant solutions, ethanol solutions, or acetic acid solutions as elution solvents for a large-scale cylindrical column packed with ash. Larger amounts of dioxins were eluted from both bottom ash and fly ash with ethanol solution and acetic acid solution than with pure water. Large quantities of dioxins were leached from fly ash but not bottom ash by non-ionic surfactant solutions. The patterns of distribution of the dioxin congeners in the leachates were very similar to those in the bottom ash or fly ash from which they were derived.  相似文献   

8.
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion.  相似文献   

9.
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes.Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.  相似文献   

10.
This paper covers the Flemish legislative tools concerning the management of bottom ash, fly ash and APC residue from municipal waste incinerators, with respect to their contamination with heavy metals. The situation in Flanders is compared to the one in the Walloon region, The Netherlands, Germany and France. Waste management in the countries considered differs on the level of available management options, of leaching tests and of limit values. To make an indicative comparison of leaching tests and limit values in the different countries, leaching tests were carried out on bottom ash and fly ash, and the results are compared to the relevant limit values for recycling and landfilling of the different countries. The comparison of legislations as well as the leaching results show that discrepancies in waste management between the different regions and countries exist. Recently, European limit values for landfilling became available. European legislation on recycling, however, has not been developed and urgently needs to be considered and drafted as the market for recycling can be expanding rapidly.  相似文献   

11.
Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.  相似文献   

12.
The aim of this study was to provide a comprehensive risk assessment for medical waste incineration fly ash from another aspect through various leaching methods. The differences and connections between leaching concentrations achieved via the toxicity characteristic leaching procedure (TCLP), the physiologically based extraction test (PBET) and the sequential extraction procedure were also described. Heavy metal contents of the used medical waste incineration fly ash were 1.7–31 times higher than that from Japan, indicating poor medical waste management in China. The fly ash leaching concentration in the TCLP test exceeded the regulation value and can be characterized as hazardous waste under current regulations. However, the PBET concentrations were only 1/10 of the TCLP value or even lower, and the calculated ingested contents of all heavy metals were lower than tolerable daily intake, demonstrating that TCLP might have overestimated the environment risk to some degree. The leaching metal content of TCLP ranged from exchangeable to residual forms, and the leaching percentage varied from 7.75 to 92.55 %, while the content for PBET was equal to or lower than the exchangeable form.  相似文献   

13.
Municipal solid waste incineration (MSWI) fly ash is by-product and hazardous waste produced from MSWI plant. In the MSWI fly ash there are high contents heavy metals, among which cadmium (Cd) is more active and toxic. Although inorganic acid leaching is an effective way to remove heavy metals out from the MSWI fly ash and nitric acid has great efficiency for Cd removal, little literature reported the redistribution of remaining Cd in the MSWI fly ash. This investigation focused on the change of different factions (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter and residual) of Cd in treated (i.e. washed with nitric acid) MSWI fly ash. Sequence extraction procedures (SEP) have been used to derive different fractions of Cd, results indicated that fractions of Cd have changed significantly after nitric acid washing procedures. Due to the changes of main compounds and microstructures stable Cd (bound to organic matter and residual) had opportunity to leach out, which resulted in a higher potential risk (or higher bioavailability index) for living creatures, although the total amount of Cd decreased. X-ray diffraction (XRD) and images of scanning electron microscope (SEM) proved these changes in washed MSWI fly ash.  相似文献   

14.
Municipal solid waste incinerator (MSWI) bottom ash may be used as a road construction material; it potentially contains however a sizable quantity of heavy metals, which under the effect of rainfall infiltration through the road structure can be leached out from the material and infiltrate into the underlying soil. An eco-compatibility assessment of MSWI bottom ash reuse in road construction applications necessitates examining the solubility and retention of heavy metals in road soils. This study is dedicated to Pb transfer, sorption and desorption (NEN 7341 standard test) within various soils. These experiments yield results relative to the interaction between road soils and an MSWI bottom ash leachate representative of a "fresh" product, with a high leaching potential. For the soils investigated, the sorption of lead varies between 90% and 99%. For an extraction at pH 7, Pb release is very low (<2%) for all soils, while at pH 4 leaching varies between 4% and 47%. This work shows that Pb may be fixed by some types of road soil in mostly stable forms.  相似文献   

15.
In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50 °C for 24 h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2–8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.  相似文献   

16.
Fly ash (FA) from municipal solid waste incinerators has been known as hazardous waste, which is mostly because of the high content of heavy metal and dioxins. Besides the content, the form of the heavy metals in fly ash is also very important, because it is tightly related with the leaching behavior of fly ash in diverse circumstances. To evaluate the environment potential risk of fly ash, the Tessier chemical extraction method was adopted. In this study, four kinds of fly ash were examined, one sample from China (CFA) and the other three from Japan (RFA, CaFA and NaFA). Five metal elements were detected and they were Ni, Cr, Cd, Pb, and Cu. The result of total heavy metals’ concentration showed CFA has the lowest content. As to the Tessier chemical extraction experiments, the results show that Cd, Pb, and Cu have higher leaching risk in the environment than other heavy metals. The result of leaching test experiment showed that the more exchangeable speciation of Cd, Cr and Pb in FA, the more it could leach out in natural environment.  相似文献   

17.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc.  相似文献   

18.
Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38 μm for use as a cement substitute (20–40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3–11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.  相似文献   

19.
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste.Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC – European Waste Catalogue – code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.  相似文献   

20.
The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号