首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

2.
Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

3.
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. In this paper jute fiber filled PLA resin (jute/PLA) composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet fabricated by pultrusion technique was adopted to prepare jute/PLA pellet. Because it is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of PLA melting temperature i.e. impregnation temperature and the kinds of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. Additionally, thermal and mechanical properties were investigated. It is found that 250° is much suitable for jute/PLA long fiber pultrusion process because of its less heat degradation of jute, better impregnation, acceptable mechanical property and higher production efficiency. Additionally the jute fibers seem much effective to increase deflection temperature under load, tensile modulus and Izod strength.  相似文献   

4.
Bionanocomposites of poly(lactic acid) (PLA) and chemically modified, nanofibrillated cellulose (NFC) powders were prepared by extrusion, followed by injection molding. The chemically modified NFC powders were prepared by carboxymethylation and mechanical disintegration of refined, bleached beech pulp (c-NFC), and subsequent esterification with 1-hexanol (c-NFC-hex). A solvent mix was then prepared by precipitating a suspension of c-NFC-hex and acetone-dissolved PLA in ice-cold isopropanol (c-NFC-hexsm), extruded with PLA into pellets at different polymer/fiber ratios, and finally injection molded. Dynamic mechanical analysis and tensile tests were performed to study the reinforcing potential of dried and chemically modified NFC powders for PLA composite applications. The results showed a faint increase in modulus of elasticity of 10?% for composites with a loading of 7.5?% w/w of fibrils, irrespective of the type of chemically modified NFC powder. The increase in stiffness was accompanied by a slight decrease in tensile strength for all samples, as compared with neat PLA. The viscoelastic properties of the composites were essentially identical to neat PLA. The absence of a clear reinforcement of the polymer matrix was attributed to poor interactions with PLA and insufficient dispersion of the chemically modified NFC powders in the composite, as observed from scanning electron microscope images. Further explanation was found in the decrease of the thermal stability and crystallinity of the cellulose upon carboxymethylation.  相似文献   

5.
In this study, the influence of alkali (NaOH) treatment on the mechanical, thermal and morphological properties of eco-composites of short flax fiber/poly(lactic acid) (PLA) was investigated. SEM analysis conducted on alkali treated flax fibers showed that the packed structure of the fibrils was deformed by the removal non-cellulosic materials. The fibrils were separated from each other and the surface roughness of the alkali treated flax fibers was improved. The mechanical tests indicated that the modulus of the untreated fiber/PLA composites was higher than that of PLA; on the other hand the modulus of alkali treated flax fiber/PLA was lower than PLA. Thermal properties of the PLA in the treated flax fiber composites were also affected. Tg values of treated flax fiber composites were lowered by nearly 10 °C for 10% NaOH treatment and 15 °C for 30% NaOH treatment. A bimodal melting behavior was observed for treated fiber composites different than both of neat PLA and untreated fiber composites. Furthermore, wide angle X-ray diffraction analysis showed that the crystalline structure of cellulose of flax fibers changed from cellulose-I structure to cellulose-II.  相似文献   

6.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

7.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

8.
In the present study, Phormium Tenax fiber reinforced PLA composites were processed by injection molding and twin screw compounding with a fiber content ranging from 10 to 30 wt%. Three surface treatment methods have been used to improve the Phormium Tenax fiber-matrix interfacial bonding that are as follows: (1) aqueous alkaline solution, (2) silane coupling agent, and (3) a combination of alkaline and silane treatment. The mechanical, thermal and morphological properties of the resulting composites were investigated. The results have shown that the moduli of surface treated fiber reinforced composites are lower than the ones obtained for untreated composites (as a consequence of the decrease in fiber modulus caused by the chemical treatments) and no significant increase in strength was observed for any of the composites compared to neat PLA. SEM micrographs of composite fractured surfaces confirmed an improvement in the interfacial strength, which was insufficient nonetheless to significantly enhance the mechanical behavior of the resulting composites. Results from thermogravimetric analysis and differential scanning calorimetry suggest that surface treatment of Phormium affects the ability of PLA to cold crystallize, and the thermal stability of the composites at the different fiber contents was reduced with introduction of alkali and silane treated Phormium fibers.  相似文献   

9.
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.  相似文献   

10.
This paper investigates and compares the performances of polylactic acid (PLA)/kenaf (PLA-K) and PLA/rice husk (PLA-RH) composites in terms of biodegradability, mechanical and thermal properties. Composites with natural fiber weight content of 20% with fiber sizes of less than 100 μm were produced for testing and characterization. A twin-screw extrusion was used to compound PLA and natural fibers, and extruded composites were injection molded to test samples. Flexural and Izod impact test, TGA, soil burial test and SEM were used to investigate properties. All results were compared to a pure PLA matrix sample. The flexural modulus of the PLA increased with the addition of natural fibers, while the flexural strength decreased. The highest impact strength (34 J m−1), flexural modulus (4.5 GPa) and flexural strength (90 MPa) were obtained for the composite made of PLA/kenaf (PLA-K), which means kenaf natural fibers are potential to be used as an alternative filler to enhance mechanical properties. On the other hand PLA-RH composite exhibits lower mechanical properties. The impact strength of PLA has decreased when filled with natural fibers; this decrease is more pronounced in the PLA-RH composite. In terms of thermal stability it has been found that the addition of natural fibers decreased the thermal stability of virgin PLA and the decrement was more prominent in the PLA-RH composite. Biodegradability of the composites slightly increased and reached 1.2 and 0.8% for PLA-K and PLA-RH respectively for a period of 90 days. SEM micrographs showed poor interfacial between the polymer matrix and natural fibers.  相似文献   

11.
This article presents approaches to maximize the mechanical performance of bacterial cellulose/poly(lactic acid) composites through chemical modification of the interface. This is achieved by both cross-linking the layered bacterial cellulose structure and by grafting maleic anhydride to the matrix material. Unmodified and glyoxalized bacterial cellulose (BC) networks have been embedded in poly(lactic acid) (PLA) resin and then in maleated resin using a compression molding method. The effect of these chemical modifications on the physical properties of these composites is reported. The tensile properties of the composites showed that Young??s moduli can be increased significantly when both BC networks and PLA were chemically modified. Interface consolidation between layers in BC networks has been achieved by glyoxalization. The effect of these modifications on both stress-transfer between the fibers and between the matrix and the fibers was quantified using Raman spectroscopy. Two competitive deformation mechanisms are identified; namely the mobility between BC layers, and between BC and PLA. The coupling strength of these interfaces could play a key role for optimization of these composites?? mechanical properties.  相似文献   

12.
Poly(lactic acid) (PLA) presents high strength and modulus, but very low toughness as well as slow crystallization. Natural rubber (NR) was blended to enhance the toughness and nucleating agent was added to improve the crystallization. Cyclodextrin (CD), considered as a green compound, as well as calcium carbonate (CaCO3) and talc were used as nucleating agents. Effects of these nucleating agents on crystallization, mechanical properties and morphology of neat PLA and PLA/NR blend were investigated. It was found that the addition of talc and CD decreased cold crystallization temperature (Tcc) of the PLA. Same result was obtained in PLA/NR blend containing talc. All nucleating agents increased the degree of crystallinity (ΧC) of PLA, whereas only talc and CaCO3 increased ΧC of PLA in PLA/NR blends. The enhanced toughness of PLA by the addition of nucleating agent was attributed to its increased crystallinity, as well as decreased spherulite size. For PLA/NR blends, the increase in toughness was mainly contributed by the presence of the rubber.  相似文献   

13.
The structural, thermal, mechanical, and biodegradable properties of composite materials made from polylactide (PLA) and agricultural residues (arrowroot (Maranta arundinacea) fibre, AF) were evaluated. Melt blended glycidyl methacrylate-grafted polylactide (PLA-g-GMA) and coupling agent-treated arrowroot fibre (TAF) formed the PLA-g-GMA/TAF composite, which had better properties than the PLA/AF composite. The water resistance of the PLA-g-GMA/TAF composite was greater than that of the PLA/AF composite; the release of PLA in water from the PLA/AF and PLA-g-GMA/TAF composites indicated good biological activity. The PLA-g-GMA/TAF material had better mechanical properties than PLA/AF. This behaviour was attributed to better compatibility between the grafted polymer and TAF. The results indicated that the Tg of PLA was increased by the addition of fibre, which may have improved the heat resistance of PLA. Furthermore, the mass losses following burial in soil compost indicated that both materials were biodegradable, especially at high levels of AF or TAF substitution.  相似文献   

14.
The evaluation method of biomass carbon ratio of polymer composite samples including organic and inorganic carbons individually was investigated. Biodegradable plastics and biobased plastics can have their mechanical properties improved by combining with inorganic fillers. Polymer composites consisting of biodegradable plastics and carbonate were prepared by two different methods. Poly(lactic acid) (PLA) composite was prepared by synthesis from l-lactide with catalyst and calcium carbonate (CaCO3) powders from lime. Poly(butylene succinate) (PBS) composite was prepared by hot-pressing the mixture of PBS powder and CaCO3 powders from oyster shells. The mechanical properties of composite samples were investigated by a tensile test and a compression test using an Instron type mechanical tester. Tensile test with a dumbbell shape specimen was performed for PBS composite samples and compression test with a column shape specimen for PLA composite samples. Strength, elastic modulus and fracture strain were obtained from the above tests. Biomass carbon ratio is regulated in the American Standards for Testing and Materials (ASTM). In ASTM standards on biomass carbon ratio, it is required that carbon atoms from carbonates, such as CaCO3, are omitted. Biomass carbon ratio was evaluated by ratio of 14C to 12C in the samples using Accelerator Mass Spectrometry (AMS). The effect of pretreatment, such as oxidation temperature and reaction by acid, on results of biomass carbon ratio was investigated. Mechanical properties decrease with increasing CaCO3 content. The possibility of an evaluation method of biomass carbon ratio of materials including organic and inorganic carbons was shown.  相似文献   

15.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

16.
30 wt% aligned untreated long hemp fibre/polylactic acid (AUL) and aligned alkali treated long hemp fibre/polylactic acid (AAL) composites were produced by film stacking and subjected to hygrothermal ageing environment along with neat polylactic acid (PLA). Hygrothermal ageing was carried out by immersing samples in distilled water at 25 and 50 °C over a period of 3 months. It was found that both neat PLA and composites followed Fickian diffusion. Higher temperature generally increased the Diffusion coefficient, D of neat PLA and composites, as well as shortening the saturation time. Neat PLA had the lowest D value followed by AAL composites and then AUL composites. After hygrothermal ageing, tensile and flexural strength, Young’s and flexural modulus and K Ic were found to decrease and impact strength was found to increase for both AUL and AAL composites. AUL composites had greater overall reduction in mechanical properties than that for AAL composites after hygrothermal ageing. Crystallinity contents of the hygrothermal aged composites support the results of the deterioration of mechanical properties upon exposure to hygrothermal ageing environment.  相似文献   

17.
With growing interest in the use of eco-friendly composite materials, biodegradable polymers and composites from renewable resources are gaining popularity for use in commercial applications. However, the long-term performance of these composites and the effect of compatibilization on their weathering characteristics are unknown. In this study, five types of biodegradable biopolymer/wood fiber (WF) composites were compatibilized with maleic anhydride (MA), and the effect of accelerated UV weathering on their performance was evaluated against composites without MA and neat biopolymers. The composite samples were prepared with 30 wt% wood fiber and one of the five biodegradable biobased polymer: poly(lactic) acid (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Bioflex (PLA blend), or Solanyl (starch based). Neat and composite samples were UV weathered for 2000 h (hours), and characterized for morphological, physical, thermal, and mechanical properties before and after weathering. Compared to composites without MA, composites containing MA grafted polymers exhibited improved properties due to increased interfacial adhesion between the fiber and matrix. Upon accelerated weathering, thermal and mechanical properties of 70% of the samples substantially decreased. Surfaces of all the samples were roughened, and drastic color changes were observed. Water absorption of all the samples increased after weathering exposure. Even though the compatibilization is shown to improve composite properties before weathering, it did not affect weathering of samples, as there were no considerable differences in properties exhibited by the composites with MA and without MA after weathering. The results suggest that compatibilization improves properties of biodegradable biobased composites without affecting its UV degradation properties.  相似文献   

18.
Biodegradable polymer was prepared as thermoplastic starch (TPS) using rice and waxy rice starches. In order to increase mechanical properties and reduce water absorption of the TPS, cotton fiber was incorporated as the fiber reinforcement into the TPS matrix. The effect of cotton fiber contents and lengths on properties of the TPS was examined. Internal mixer and compression molding machine were used to mix and shape the samples. It was found that the thermoplastic rice starch (TPRS) showed higher stress at maximum load and Young’s modulus but lower strain at maximum load than the thermoplastic waxy rice starch (TPWRS). In addition, stress at maximum load and Young’s modulus of both TPRS and TPWRS increased significantly with the addition of the cotton fiber. Cotton fiber contents and lengths also affected mechanical properties of the TPRS and TPWRS composites. Moreover, water absorption of the TPRS and TPWRS composites decreased by the use of the cotton fibers. FT-IR and XRD techniques were used to study a change in functional group and crystallinity of the thermoplastic starch composites. Morphological, thermal and biodegradable properties of different thermoplastic starch composites were also investigated.  相似文献   

19.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

20.
Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号