首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
This long-term study, performed during the years 2003–2005 and 2008–2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6?±?6.9 %, 2.8?±?1.8 %, and 0.18?±?0.08 %, and phytoplankton (>20 μm) 6.8?±?6.0 %, 1.6?±?1.5 %, and 0.09?±?0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21?±?0.1 μM for phosphate, 0.08?±?0.1 μM for nitrite, 0.74?±?1.6 μM for nitrate, and 1.27?±?1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.  相似文献   

2.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

3.
Amisulbrom formulated as suspension concentrate was applied at the rate recommended for Korean melon to determine the dissipation pattern (at two different sites), the pre-harvest residue limit (PHRL), and risk assessments. Samples collected over 10 days were extracted using liquid-liquid extraction (LLE) and cleaned up with solid-phase extraction (SPE) Florisil cartridge. Residual concentrations were determined using liquid chromatography-ultraviolet detector (LC-UVD) and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standard showed good instrument response linearity with a correlation coefficient (R 2) = 0.9999, and the recovery ranged from 87.5 to 93.7%. The dissipation half-life calculated from two different sites were found to be 7.0 and 8.8 days for sites 1 and 2, respectively. A PHRL graph constructed from the data indicated that if the residue levels were less than 0.55–0.59 mg/kg 3 days before harvest or less than 0.61–0.74 mg/kg 7 days before harvest, then they would be lower than the maximum residue limits (MRLs) at harvest. Risk assessments showed that the risk quotient (RQ) was 4.39–3.47% at 0 day, declined to 1.53–1.63% at 10 days. Therefore, the current data indicate that the amisulbrom can be applied safely to Korean melon; hence, it is unlikely to induce adverse health effects in consumers.  相似文献   

4.
A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78–92% at the minimum detectable concentration of 0.003 μg g???1. Analysis showed 0.015 and 0.005 μg g???1 residues of oxyfluorfen at 250 g a.i. ha???1 rate in green and mature onion samples, respectively; however, at 500 g a.i.ha???1 rates, 0.025 and 0.011 μg g???1 of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 μg g???1 of oxyfluorfen residues at the doses 250 and 500 g a.i. ha???1, respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested.  相似文献   

5.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   

6.
The dissipation and residues of bispyribac-sodium in rice cropping system were studied. Bispyribac-sodium residues were extracted by a simple analytical method based on QuEChERs and detected by LC-MS/MS. The limit of detection for bispyribac-sodium of this method was 0.375?×?10?3 ng. The limit of quantification (LOQ) was 5.0 μg/kg for rice plant samples, 2.0 μg/kg for rice hull, 0.2 μg/kg for water, and 0.1 μg/kg for soil and husked rice samples. The average recoveries of bispyribac-sodium ranged from 74.7 to 108 %, with relative standard deviations less than 13 %. The half-lives of bispyribac-sodium in rice plant, water, and soil were in the range of 1.4–5.6 days. More than 90 % of bispyribac-sodium residue dissipated within 5 days. The final residues of bispyribac-sodium in rice were all below LOQ at harvest time.  相似文献   

7.
Phosphorus (P) sorption by sediments may play a vital role in buffering P concentration in the overlying water column. To characterize P sorption–desorption in the river bed sediments, 17 bed sediment samples collected from Abshineh river, in a semi arid region, Hamedan, western Iran were studied through a batch experiment and related to sediment composition. The sorbed fraction ranged from 4.4% to 5.4% and from 38.5% to 86.0% of sorption maxima when 20 and 1,500 mg P kg?1, respectively, was added to the sediment samples. Phosphorus sorption curves were well fitted to the Langmuir model. Zero equilibrium P concentration ranged from 0.10 to 0.51 mg P l?1 and varied with sediment characteristics. Phosphorus desorption differed strongly among the studied bed sediments and ranged from 10.8% to 80.2% when 1,500 mg P kg?1 was added. The results of the geochemical modelling indicated that even under low P addition (2 mg l?1), the solutions are mainly saturated with respect to hydroxyapatite and ß-tricalcium phosphate minerals and undersaturated with respect to other Ca and Mg minerals, whereas under higher P addition (150 mg l?1), most Ca–P solid phases, except the most soluble mineral (brushite), will likely precipitate. A Langmuir sorption maximum was positively correlated with carbonate calcium. Estimated P retention capacity of the bed sediments are generally lower and zero equilibrium P concentration values higher in upstream sites than at the downstream sites, suggesting that sediments in upstream and downstream may act as source and sink of P, respectively.  相似文献   

8.
Enhancement of multiple heavy metal uptake from municipal solid waste (MSW) compost by Lolium perenne L. in a field experiment was investigated with application of EDTA. EDTA was added in solution at six rates (0–30 mmol kg???1) after 50 days of plant growth. Two weeks later, plants were harvested for the first crop and then all the turfgrasses were mowed. After another 30 days of growth, EDTA was added again at above six rates to the corresponding sites and the second crop was harvested 2 weeks later. The results showed that EDTA significantly increased heavy metal accumulation in both crops of L. perenne. For the first crop, the concentrations of Mn, Ni, Cd, and Pb in the shoots increased remarkably with increasing EDTA supply, peaked at 25 mmol kg???1 EDTA, and shoots of 0–5 cm height (shoots from medium surface to 5 cm height) had higher metal concentrations than 5–10 cm and >10 cm shoots. The highest concentration of Mn, Ni, Cd, and Pb was 2.3-, 2.3-, 2.6-, and 3.2-fold, respectively, in 0–5 cm shoots higher than control. For the second crop, the concentrations of Mn, Cu, and Pb in shoots were, in general, less than those in the first crop. However, the second crop was significantly higher (P?< 0.05) than the first crop in dry biomass, so the total amount of metals removed by the second crop was more than the first crop. In addition, EDTA significantly increased the translocation ratios of most heavy metals from roots to shoots. For the first crop, 38% of the total Zn, 51% of Cd, 49% of Pb, 60% Mn, 55% Ni, and 45% Cu taken up by the plant was translocated in the shoots of 0–5 cm height. Turfgrass would have potential for use in remediation of heavy metals in MSW compost or contaminated soils.  相似文献   

9.
The study was conducted to determine the optimum storage time for vermicompost without significant loss of nutrients; nitrogen (N), phosphorous (P), and potassium (K). Cattle manure, paddy straw, municipal solid wastes, and fly ash were used for vermicompost preparations. The dynamics of N, P, and K in the vermicomposts were studied during 180 days of incubation at 28–32 °C. In general, N concentration increased in the first 90–105 days of incubation and then gradually decreased until the 180th day while P and K concentrations steadily decreased over the length of the study, with the rate of loss leveling off after 150 days. The rate of nutrient loss was directly related to the initial level, decreasing the fastest for the nutrients with the highest initial concentrations. Optimum storage times were substrate and N dependent.  相似文献   

10.
Soil samples were collected from four aquaculture ponds (yellow perch culture), a control pond (without aquaculture activities, fallow pond), crop land (under corn), and forest land to estimate the carbon (C) sequestration potential in the Piketon county, Ohio, USA. The averaged total of C was 6.5?±?2, 8.8?±?2, 8.53?±?0.2 and 10.49?±?1.1 Mg/ha (Mg=106g) in <?0.25 mm fraction; 15.2?±?2, 16.0?±?3, 11.49?±?0.8 and 17.23?±?3.4 Mg/ha in micro aggregates (0.25–2.5 mm); and 22.1?±?3, 26.4?±?3, 12.16?±?1.6 and 18.51?±?4.3 Mg/ha in macro aggregates (?>?2.5mm), for aquaculture ponds, control ponds, cropland and forest land, respectively. The soil/sediment C pool followed the order of forest?>?crop land soils?>?aquaculture pond soils.  相似文献   

11.
Urban road dust samples were collected from different land use areas in Suzhou, Wuxi, and Nantong, Yangtze River Delta, China. The dust samples were analyzed for the levels and compositional profiles of deca-polybrominated diphenyl ethers (Deca-BDE), 22 organochlorine pesticides (OCPs), and 16 polycyclic aromatic hydrocarbons (PAHs). The levels of BDE-209, ∑OCPs, and ∑PAHs in samples ranged from 4.01–1,439 μg/kg, 3.15–615 μg/kg, and 2.24–58.2 mg/kg, respectively. PAHs were the predominant target compounds in road dust samples, comprising on average 97.7 % of total compounds. The spatial gradient of the pollutants (commercial/residential area> industrial area > urban park concentrations) was observed in the present study. The results indicated that the levels of BDE-209, OCPs, and PAHs observed in road dust were usually linked to anthropogenic activities in the urban environment. In addition, there might be a reflection of current usage or emissions of OCPs in urban environment.  相似文献   

12.
Pesticide residues in vegetable samples from the Andaman Islands, India   总被引:2,自引:0,他引:2  
Vegetable samples of brinjal, okra, green chilli, crucifers, and cucurbits collected from farmers' field were tested for the presence of organochlorine (OC), organophosphorus (OP), and synthetic pyrethroid (SP) compounds using a gas chromatograph equipped with electron capture and flame thermionic detectors. Of the samples tested, 34.0 % were found to have pesticide residues. Among the OC compounds, α-endosulfan, β-endosulfan, and endosulfan sulfate were detected in 14.5 % of the samples with residues. These were taken from crucifer, okra, green chilli, and cucurbit samples. SP compound residues, such as α-cypermethrin, fenvalerate I, fluvalinate I, deltamethrin, and λ-cyhalothrin were detected in 32 % of the samples with residues. OP compound residues such as chlorpyrifos, profenofos, monocrotophos, triazophos, ethion, dimethoate, and acephate were found in 54 % of the samples with residues, which were taken from all vegetable samples. Of the positive samples, 15.3 % were found to contain residues exceeding the prescribed maximum residue limit. The average pesticide residue content across all the vegetable samples was 0.108 ppm, with values ranging from 0.008 to 2.099 ppm. Multiple residues of more than one compound were detected in 34.1 % of samples containing residues.  相似文献   

13.
We presented measurements of wet deposition of NH 4 + –N and NO 3 ? –N from 1986 to 2006 in Shenzhen City, China. Over the past 20 years, NO 3 ? –N concentration had significantly increased, but a reverse trend was found for NH 4 + –N. The main form of total inorganic nitrogen (TIN) was NH 4 + –N and the average NH 4 + –N/NO 3 ? –N ratio was 1.57 in this area. The contribution of NO 3 ? –N to TIN increased from 28–42% in the period of 1986–2000 to 50–63% during 2001–2006. The increased deposition flux of NO 3 ? –N resulted in the increasing trend of TIN, although NH 4 + –N showed a decreasing trend over time. Average deposition flux of TIN during 1986–2006 was 13.24 kg/ha/year, with a minimum value of 6.03kg/ha/year in 1988 and a maximum value of 20.52 kg/ha/year in 1997. Wet deposition fluxes of N appeared to vary with season, 81% occurred in the warm season (from April to September). The wet deposition of TIN to the Shenzhen Reservoir reached 8,902 kg in 2006, which contributed 9.95% of the total nonpoint pollution to the reservoir and will be increased in the future.  相似文献   

14.
Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 μg As L???1 to 2.0 μg As L???1 while those in the sediment were in the range of 25–200 μg As kg soil???1. Both values were below the Thailand national standard of 0.25 mg As L???1 for water and 27 mg As kg soil???1 for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant???1. Regarding the result of regression analysis (R 2?= 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R 2?= 0.954), Ipomoea aquatica Forsk. (R 2?= 0.850), and Typha angustifolia (L.) (R 2?= 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R 2?= 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC.  相似文献   

15.
Using observations from two remote sites during July 2004 to March 2005, we show that at Akdala (AKD, 47° 06′ N, 87° 58′ E, 562 m asl) in northern Xinjiang Province, there were high wintertime loadings of organic carbon (OC), elemental carbon (EC), and water-soluble (WS) ${\rm SO}_{4}^{2-}$ , ${\rm NO}_{3}^{2-}$ , and ${\rm NH}_{4}^{+}$ , which is similar to the general pattern in most areas of China and East Asia. However, at Zhuzhang (ZUZ, 28° 00′ N, 99° 43′ E, 3,583 m asl) in northwestern Yunnan Province, the aerosol concentrations and compositions showed little seasonal variation except for a decreasing trend of OC from August to autumn–winter. Additionally, the OC variations dominated the seasonal variation of PM10 (particles ≤10 μm diameter) level. Chemical characteristics combined with transport information suggested sea salt origin of ionic Na?+?, Mg2?+?, and Cl??? at ZUZ. At AKD, ionic Ca2?+?, Mg2?+?, Na?+?, and Cl??? primarily originated from salinized soil. Furthermore, the WS Ca2?+? contributions (5.4–6%) to the PM10 mass during autumn, winter, and early spring reflected a constant dust component. The results of this study indicated that both sites were regionally representative. However, the representative regions and scales of these background sites may vary seasonally as the regional atmospheric transport patterns change. Seasonal variations in the background aerosol levels from these two areas need to be considered when evaluating the regional climate effects of the aerosols.  相似文献   

16.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

17.
A simple and accurate method of determining metalaxyl and cymoxanil in pepper and soil was developed by ultra-performance liquid chromatography–photodiode array detection. The limits of detection were 0.015 mg/kg for metalaxyl and 0.003 mg/kg for cymoxanil. The limits of quantification were 0.05 mg/kg for metalaxyl in pepper and soil as well as 0.01 mg/kg for cymoxanil in pepper and soil. Recoveries of pepper and soil were investigated at three spiking levels and ranged within 77.52 to 102.05 % for metalaxyl and 87.15 to 103.21 % for cymoxanil, with relative standard deviations below 9.30 %. For field experiments, the half-lives of metalaxyl were 3.2 to 3.9 days in pepper and 4.4 to 9.5 days in soil at the three experimental locations in China. At harvest, pepper samples were found to contain metalaxyl and cymoxanil well below the maximum residue limit MRLs of the European Union (EU) following the recommended dosage and the interval of 21 days after last application.  相似文献   

18.
The aim of this study was to evaluate the incidence of total aflatoxin (AF), ochratoxin A, T-2 toxin, deoxynivalenol (DON), zearalenone (ZEA), and fumonisin (FB) in dairy cattle, beef cattle, and lamb–calf feeds. A total of 180 dairy cattle, beef cattle, and lamb–calf feeds (60 samples each) were randomly collected from farms, feed mills, and villages in Burdur province, between September 2006 and August 2007. All samples were analyzed by the competitive Enzyme Linked Immuno Sorbent Assay (ELISA). The most frequent mycotoxin detected was total AF, which was found in 108 samples (60 %) in concentrations ranging from 3.82 to 116.83 μg?kg?1, followed by DON that was detected in 87 samples (48.3 %), in concentrations ranging from 18.50 to 500 μg?kg?1. Ochratoxin A (OTA), T-2 toxin, ZEA, and FB were found in 84 (46.7 %), 85 (47.2 %), 57 (31.7 %), and 19 (10.6 %) samples, respectively, in concentrations of 1.01 to 15.85 μg?kg?1 for OTA, 3.85 to 52.36 μg?kg?1 for T-2 toxin, 2.10 to 29.30 μg?kg?1 for ZEA, and 2.69 to 4.96 mg?kg?1 for FB. It was concluded that feed samples in Burdur province were contaminated by mycotoxins, and the levels of total aflatoxin in the samples were considered a risk to animal health.  相似文献   

19.
The effects of the long-term contamination of water reservoirs with mine effluents were investigated at an abandoned mine site in Upper Silesia, southern Poland. The studies covered metal content and mobility in bottom sediments as well as water chemistry in relation to the content of metals in selected macrophytes and their physiology and the composition of phyto- and zooplankton communities. Although it is 40 years since mining ceased, reservoir sediments are still heavily contaminated with cadmium, zinc and lead with concentrations (mg/kg), which vary roughly between 130–340, 10,000–50,000 and 4,000–12,000, respectively. About 50–80 % of these elements are associated with the reducible phase, and only a small percentage, <10 %, is present in the most mobile exchangeable phase. Despite the high total metal concentration in sediments, their content in the submerged plants Myriophyllum spicatum and the emerged plants Phragmites australis was low. The observed effects of heavy metal contamination on photosynthetic activity in the leaves of P. australis were negligible, whereas those in M. spicatum show up only as a difference in the distribution of photosynthetic activity in leaves of different ages, which seems to be related to the very good water quality and to the generally small concentrations of metals in pond water. The physicochemical properties of water also seem to control the presence of planktonic species more than does sediment contamination. However, a shift toward groups of species known to be more resistant to heavy metals (diatoms, green algae and Rotifera) indicates some adaptative changes related to the long-lasting contamination of ponds.  相似文献   

20.
Animal products like milk and meat are often found to be contaminated with residues of persistent pesticides and other toxic substances. The major source of entry of these compounds to animal body is the contaminated feed and fodder. So, unless the residues are managed at this stage, it is very difficult to prevent contamination in milk and meat. Therefore, the status of residue level of most persistent organochlorinated pesticides (OCP) in feed and fodder should be monitored regularly. The frequency of occurrence and contamination levels of OCP residues in different kinds of animal concentrate feed and straw samples collected from Bundelkhand region of India were determined. Out of 533 total samples, 301 i.e. 56.47% samples were positive containing residues of different OCPs like hexachlorocyclohexane (HCH) isomers, dichlorodiphenyltrichloroethane (DDT) complex, endosulfan and dicofol. Among different HCH isomers, the mean concentration of ??-HCH was highest, and total HCH varied from 0.01 to 0.306 mg kg???1. In case of DDT complex, i.e. DDD, DDE and DDT, the concentration ranged between 0.016 and 0.118 mg kg???1 and the pp| isomers were more frequently encountered than their op| counterparts. Endosulfan was also found in some samples in concentration ranging from 0.009 to 0.237 mg/kg, but dicofol could be recorded in very few samples. Although feed samples were found to contain OC residues, after comparing their levels in positive samples with the limiting values of respective pesticides, only very few were found to exceed the threshold level. Otherwise, they were mostly within safe limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号