首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozone measurements made using Schönbein’s method during the late nineteenth and early twentieth centuries have been examined and converted to modern units using a method originally developed by Linvill et al. (1980). Monthly Weather Review 108, 1880–1891 and Anfossi et al. (1991). Journal of Geophysics Research 96, 17,349–17,352. New data are presented here from sites in Europe, Asia, Africa, Australia, and South America. The values obtained lie in the range 5–15 ppb for all sites. A negative correlation between ozone and humidity is observed, which may be consistent with photochemical loss of ozone in the presence of water vapour. However, uncertainties in the humidity correction to the Schönbein reading will lead to considerable inaccuracies in the seasonal cycle established by this method.  相似文献   

2.
Exposure of black carbon (BC) is associated with a variety of adverse health outcomes. A number of optical methods for estimating BC on Teflon filters have been adopted but most assume all light absorption is due to BC while other sources of colored particulate matter exist. Recently, a four-wavelength-optical reflectance measurement for distinguishing second hand cigarette smoke (SHS) from soot-BC was developed (Brook et al., 2010; Lawless et al., 2004). However, the method has not been validated for soot-BC nor SHS and little work has been done to look at the methodological issues of the optical reflectance measurements for samples that could have SHS, BC, and other colored particles. We refined this method using a lab-modified integrating sphere with absorption measured continuously from 350 nm to 1000 nm. Furthermore, we characterized the absorption spectrum of additional components of particulate matter (PM) on PM(2.5) filters including ammonium sulfate, hematite, goethite, and magnetite. Finally, we validate this method for BC by comparison to other standard methods. Use of synthesized data indicates that it is important to optimize the choice of wavelengths to minimize computational errors as additional components (more than 2) are added to the apportionment model of colored components. We found that substantial errors are introduced when using 4 wavelengths suggested by Lawless et al. to quantify four substances, while an optimized choice of wavelengths can reduce model-derived error from over 10% to less than 2%. For environmental samples, the method was sensitive for estimating airborne levels of BC and SHS, but not mass loadings of iron oxides and sulfate. Duplicate samples collected in NYC show high reproducibility (points consistent with a 1:1 line, R(2) = 0.95). BC data measured by this method were consistent with those measured by other optical methods, including Aethalometer and Smoke-stain Reflectometer (SSR); although the SSR looses sensitivity at filter loadings above 90 ng/mm(2). Furthermore, positive correlations (R(2) = 0.7) were observed between EC measured by NIOSH Method 5040 on quartz filters and BC measured in co-located Teflon filter samples collected from both heating and non-heating seasons. Overall, the validation data demonstrates the usefulness of this method to evaluate BC from archived Teflon filters while potentially providing additional component information.  相似文献   

3.
Air quality field data, collected as part of the fine particulate matter Supersites Program and other field measurements programs, have been used to assess the degree of intraurban variability for various physical and chemical properties of ambient fine particulate matter. Spatial patterns vary from nearly homogeneous to quite heterogeneous, depending on the city, parameter of interest, and the approach or method used to define spatial variability. Secondary formation, which is often regional in nature, drives fine particulate matter mass and the relevant chemical components toward high intraurban spatial homogeneity. Those particulate matter components that are dominated by primary emissions within the urban area, such as black carbon and several trace elements, tend to exhibit greater spatial heterogeneity. A variety of study designs and data analysis approaches have been used to characterize intraurban variability. High temporal correlation does not imply spatial homogeneity. For example, there can be high temporal correlation but with spatial heterogeneity manifested as smooth spatial gradients, often emanating from areas of high emissions such as the urban core or industrial zones.  相似文献   

4.
In this study, two method intercomparisons were performed. One thermal and two optical methods for the measurement of black carbon (BC) were applied to laboratory generated aerosols containing only BC. For the optical measurements, an aethalometer (Hansen et al., 1984. Science of Total Environment 36, 191–196) and an integrating sphere technique (Hitzenberger et al., 1996b. Journal of Geophysical Research 101, D14, 19 601–19 606) were used. The thermal method was described by Cachier et al. (1989a. Tellus 41B, 379–390). In an additional comparison, the integrating sphere was compared to a thermal optical technique (Birch and Cary, 1996. Aerosol Science Technology 25, 221–241) on ambient aerosol samples. The absorption coefficients were obtained from transmission measurements on filter samples for both the aethalometer and the integrating sphere. The BC mass concentration for the aethalometer was derived from this absorption measurement. The BC mass concentration for the integrating sphere, however, was obtained using an independent calibration curve. The agreement between the absorption coefficient σa obtained for the BC test aerosol on parallel filters with the aethalometer and the integrating sphere was satisfactory. The slope of the regression lines depended on filter type. A comparison between BC mass concentrations, however, showed that the aethalometer values were only 23% of those obtained by the integrating sphere technique indicating that for pure BC aerosols, the standard aethalometer calibration should not be used. Compared to the thermal method, the integrating sphere gave an overestimation of the BC mass concentrations by 21%. For the ambient samples, the integrating sphere and the thermal optical methods for BC mass concentration determination showed agreement within 5% of the 1 : 1 line, although the data were not so well correlated.  相似文献   

5.
A simple method, in real time, to detect an inversion layer in the lower atmosphere, can be that of monitoring horizontal microwave radiopropagation across the considered area, between two stations linked by radiowaves only during non-standard atmospheric conditions.Experimental results of the first three months of continuous measurements at 3cm, wave-lengths, are given for a path only over sea and for one only flat land.An attempt to find a connection with local meteorological ground data has shown a strong correlation between radio signal reception along super-standard distances and the water vapour pressure for the sea path. In this case, “radio ducting” seems to result from a steep monotonic decaying of the water content of the air.Radio measurements over the flat land path show radio ducting to be an almost nocturnal process. In this case, radiopropagation beyond the horizon detects temperature inversions caused by nocturnal cooling and, therefore, there is no correlation with meteorological ground data.Finally, the frequent presence of radio ducts (time efficiencies greater than 80% have been measured by the authors in certain periods of the year) could also be exploited by telecommunication users for inexpensive transmission, although not in real time, of pre-recorded data.  相似文献   

6.
Abstract

Air quality field data, collected as part of the fine particulate matter Supersites Program and other field measurements programs, have been used to assess the degree of intraurban variability for various physical and chemical properties of ambient fine particulate matter. Spatial patterns vary from nearly homogeneous to quite heterogeneous, depending on the city, parameter of interest, and the approach or method used to define spatial variability. Secondary formation, which is often regional in nature, drives fine particulate matter mass and the relevant chemical components toward high intraurban spatial homogeneity. Those particulate matter components that are dominated by primary emissions within the urban area, such as black carbon and several trace elements, tend to exhibit greater spatial heterogeneity. A variety of study designs and data analysis approaches have been used to characterize intraurban variability. High temporal correlation does not imply spatial homogeneity. For example, there can be high temporal correlation but with spatial heterogeneity manifested as smooth spatial gradients, often emanating from areas of high emissions such as the urban core or industrial zones.  相似文献   

7.
Although PCB in caulking materials has been forbidden for many years in most of Europe, including Denmark, there has been continued interest to measure PCB levels in the air of contaminated buildings and blood of the occupants (Mengon and Schlatter 1993, Fromme et al. 1996, Ewers et al. 1998, Currado and Harrad 1998, Gabrio et al. 2000). The relatively low priority for investigations of this contamination is probably due to the small quantities inhaled compared to exposure via food, and the rapid metabolism of the most volatile congeners demonstrated by low concentrations of all congeners in the blood of exposed persons (Ewers et al. 1998, Gabrio et al. 2000). There is, however, evidence that PCB containing caulking materials have been used even during the '90s (Fromme et al. 1996). In Denmark, it is estimated that 75 t PCB is still in buildings (Organization of Sealant Branch's Manufacturers and Distributors 2000). During an investigation of dust from buildings with excessive microbial growth (including 35 rooms from 9 buildings), the analysis of semivolatile compounds by thermal desorption-GC/MS of samples from a single building surprisingly revealed large amounts of PCBs containing 3, 4 and 5 chlorine atoms, 10-20 times the amounts found in samples from other buildings. Extraction of the dust by SFE followed by GC/ECD analysis for 12 PCB congeners showed that there was approximately 20 times the total PCB concentrations in dust from the polluted building compared to the levels in the other buildings. Subsequent headspace analysis of caulking material from the polluted building revealed this to be the source. Shelf dust functions as a passive sampling medium and, thus, can be used as a screening method to detect PCB and other semivolatile pollution indoors.  相似文献   

8.
The ETEX data set opens new possibilities to develop data assimilation procedures in the area of long-range transport. This paper illustrates the possibilities using a variational approach, where the source term for ETEX-I was reconstructed. The MATCH model (Robertson et al., 1996) has been the basis for this attempt. The timing of the derived emission rates are in accordance with the time period for the ETEX-I release, and a cross validation, with observations beyond the selected assimilation period, shows that the source term gained holds for the entire ETEX-I experiment. A poor-man variational approach was shown to perform nearly as good as a fully variational data assimilation. The issue of quality control has not been considered in this attempt but will be an important part that has to be addressed in future work.  相似文献   

9.
In urban and suburban settings, indoor ozone exposures can represent a significant fraction of an individual's total exposure. The decay rate, one of the factors determining indoor ozone concentrations, is inadequately understood in residences. Decay rates were calculated by introducing outdoor air containing 80-160 parts per billion ozone into 43 residences and monitoring the reduction in indoor concentration as a function of time. The mean decay rate measured in the living rooms of 43 Southern California homes was 2.80 +/- 1.30 hr-1, with an average ozone deposition velocity of 0.049 +/- 0.017 cm/sec. The experimental protocol was evaluated for precision by repeating measurements in one residence on five different days, collecting 44 same-day replicate measurements, and by simultaneous measurements at two locations in six homes. Measured decay rates were significantly correlated with house type and the number of bedrooms. The observed decay rates were higher in multiple-family homes and homes with fewer than three bedrooms. Homes with higher surface-area-to-volume ratios had higher decay rates. The ratio of indoor-to-outdoor ozone concentrations in homes not using air conditioning and open windows was 68 +/- 18%, while the ratio of indoor-to-outdoor ozone was less than 10% for the homes with air conditioning in use.  相似文献   

10.
11.
ABSTRACT

As part of the global effort to quantify and manage anthropogenic greenhouse gas emissions, there is considerable interest in quantifying methane emissions in municipal solid waste landfills. A variety of analytical and experimental methods are currently in use for this task. In this paper, an optimization-based estimation method is employed to assess fugitive landfill methane emissions. The method combines inverse plume modeling with ambient air methane concentration measurements. Three different measurement approaches are tested and compared. The method is combined with surface emission monitoring (SEM), above ground drone emission monitoring (DEM), and downwind plume emission monitoring (DWPEM). The methodology is first trialed and validated using synthetic datasets in a hand-generated case study. A field study is also presented where SEM, DEM and DWPEM are tested and compared. Methane flux during two-days measurement campaign was estimated to be between 228 and 350 g/s depending on the type of measurements used. Compared to SEM, using unmanned aerial systems (UAS) allows for a rapid and comprehensive coverage of the site. However, as showed through this work, advancement of DEM-based methane sampling is governed by the advances that could be made in UAS-compatible measurement instrumentations. Downwind plume emission monitoring led to a smaller estimated flux compared with SEM and DEM without information about positions of major leak points in the landfill. Even though, the method is simple and rapid for landfill methane screening. Finally, the optimization-based methodology originally developed for SEM, shows promising results when it is combined with the drone-based collected data and downwind concentration measurements. The studied cases also discovered the limitations of the studied sampling strategies which is exploited to identify improvement strategies and recommendations for a more efficient assessment of fugitive landfill methane emissions.

Implications: Fugitive landfill methane emission estimation is tackled in the present study. An optimization-based method combined with inverse plume modeling is employed to treat data from surface emission monitoring, drone-based emission monitoring and downwind plume emission monitoring. The study helped revealing the advantages and the limitations of the studied sampling strategies. Recommendations for an efficient assessment of landfill methane emissions are formulated. The method trialed in this study for fugitive landfill methane emission could also be appropriate for rapid screening of analogous greenhouse gas emission hotspots.  相似文献   

12.
Isoprene emission rates of 64 plant species found in California's urban and natural landscapes were measured using a dynamic flow-through chamber enclosure technique. Species were selected to provide data for previously unmeasured species and to test estimates of isoprene emission rates based upon taxonomic relationships developed for compilation of biogenic emission inventories as proposed by Benjamin et al. (1996, Atmospheric Environment 30, 1437–1452). Branch-level isoprene emission rates ranged from undetectable for 47 species, to 54 μg g−1 h−1 for Quercus kelloggii, California black oak. Isoprene emission rate estimates based on taxonomy agreed well with our measurements for species within the same genus, with the exception of the Quercus genus for which a wide range of isoprene emission rates have been reported. As expected, family-level estimates based on taxonomy showed greater deviation from our measured values than did genus-based estimates. The data developed in the present study support use of a taxonomic predictive methodology, especially if previous measurements within specific families, sub-families, and genera are extensive, and the results of such assignment are treated with proper caution. A taxonomic approach may be most useful where plant species in natural and urban landscapes are numerous, such as in California, where no experimental measurements are available for thousands of species.  相似文献   

13.
Minimum relative entropy (MRE) and Tikhonov regularization (TR) were compared by Neupauer et al. [Water Resour. Res. 36 (2000) 2469] on the basis of an example plume source reconstruction problem originally proposed by Skaggs and Kabala [Water Resour. Res. 30 (1994) 71] and a boxcar-like function. Although Neupauer et al. [Water Resour. Res. 36 (2000) 2469] were careful in their conclusions to note the basis of these comparisons, we show that TR does not perform well on problems in which delta-like sources are convolved with diffuse-groundwater contamination response functions, particularly in the presence of noise. We also show that it is relatively easy to estimate an appropriate value for epsilon, the hyperparameter needed in the minimum relative entropy solution for the inverse problem in the presence of noise. This can be estimated in a variety of ways, including estimation from the data themselves, analysis of data residuals, and a rigorous approach using the real cepstrum and the Akaike Information Criterion (AIC). Regardless of the approach chosen, for the sample problem reported herein, excellent resolution of multiple delta-like spikes is produced from MRE from noisy, diffuse data. The usefulness of MRE for noisy inverse problems has been demonstrated.  相似文献   

14.
Abstract

Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.  相似文献   

15.
Improving knowledge on the apportionment of airborne particulate matter will be useful to handle and fulfill the legislation regarding this pollutant. The main aim of this work was to assess the influence of markers in the source apportionment of airborne PM10, in particular, whether the use of particle polycyclic aromatic hydrocarbon (PAH) and ions provided similar results to the ones obtained using not only the mentioned markers but also gas phase PAH and trace elements. In order to reach this aim, two receptor models: UNMIX and positive matrix factorization were applied to two sets of data in Zaragoza city from airborne PM10, a previously reported campaign (2003–2004) (Callén et al. Chemosphere 76:1120-1129, 2009), where PAH associated to the gas and particle phases, ions and trace elements were used as markers and a long sampling campaign (2001–2009), where only PAH in the particle phase and ions were analyzed. For both campaigns, positive matrix factorization was able to explain a higher number of sources than the UNMIX model. Independently of the sampling campaign and the receptor model used, soil resuspension was the main PM10 source, especially in the warm period (21st March–21st September), where most of the PM10 exceedances were produced. Despite some of the markers of anthropogenic sources were different for both campaigns, common sources associated to different combustion sources (coal, light-oil, heavier-oil, biomass, and traffic) were found and PAH in particle phase and ions seemed to be good markers for the airborne PM10 apportionment.  相似文献   

16.
An expanded chemical mass balance (CMB) approach for PM2.5 source apportionment is presented in which both the local source compositions and corresponding contributions are determined from ambient measurements and initial estimates of source compositions using a global-optimization mechanism. Such an approach can serve as an alternative to using predetermined (measured) source profiles, as traditionally used in CMB applications, which are not always representative of the region and/or time period of interest. Constraints based on ranges of typical source profiles are used to ensure that the compositions identified are representative of sources and are less ambiguous than the factors/sources identified by typical factor analysis (FA) techniques. Gas-phase data (SO2, CO and NOy) are also used, as these data can assist in identifying sources. Impacts of identified sources are then quantified by minimizing the weighted-error between apportioned and measured levels of the fitting species. This technique was applied to a dataset of PM2.5 measurements at the former Atlanta Supersite (Jefferson Street site), to apportion PM2.5 mass into nine source categories. Good agreement is found when these source impacts are compared with those derived based on measured source profiles as well as those derived using a current FA technique, Positive Matrix Factorization. The proposed method can be used to assess the representativeness of measured source-profiles and to help identify those profiles that may be in significant error, as well as to quantify uncertainties in source-impact estimates, due in part to uncertainties in source compositions.  相似文献   

17.
The models for photosynthetically active radiation (PAR) used in a multi-layer canopy stomatal resistance (CSR) model developed by Baldocchi et al. (Atmospheric Environment 21 (1987) 91–101) and in a two-big-leaf CSR model developed by Hicks et al. (Water, Air and Soil Pollution 36 (1987) 311) are investigated in this study. The PAR received by shaded leaves in Baldocchi et al. (1987) is found to be larger than that predicted by a canopy radiative-transfer model developed by Norman (in: Barfield, Gerber, (Eds.), Modification of the Aerial Environment of Crops. ASAE Monograph No. 2. American Society for Agricultural. Engineering, St. Joseph, MI, 1979, p. 249) by as much as 50% even though the Baldocchi et al. (1987) model is indirectly based on Norman's model. This larger value of PAR results in turn in a smaller CSR by as much as 30% for canopies with larger leaf area indexes. A new formula to predict vertical profiles for PAR received by shaded leaves inside a canopy is suggested in the present study based on Norman (1979) and agrees well with the original model of Norman (1979). The simple treatment used in Hicks et al. (1987) for canopy-average PAR received by shaded leaves is found to diverge for canopies with leaf area indexes not close to two A new empirical formula for canopy-average PAR is then suggested for use in a two-big-leaf model, and it is shown that under most conditions the modified two-big-leaf CSR model can predict reasonable values when compared with the more complex multi-layer CSR model. Both the modified multi-layer CSR model and the modified two-big-leaf CSR model are also shown to predict reasonable dry deposition velocities for O3 when compared to several sets of measurements.  相似文献   

18.
ABSTRACT

In urban and suburban settings, indoor ozone exposures can represent a significant fraction of an individual's total exposure. The decay rate, one of the factors determining indoor ozone concentrations, is inadequately understood in residences. Decay rates were calculated by introducing outdoor air containing 80-160 parts per billion ozone into 43 residences and monitoring the reduction in indoor concentration as a function of time. The mean decay rate measured in the living rooms of 43 Southern California homes was 2.80 + 1.30 hr-1, with an average ozone deposition velocity of 0.049 + 0.017 cm/sec. The experimental protocol was evaluated for precision by repeating measurements in one residence on five different days, collecting 44 same-day replicate measurements, and by simultaneous measurements at two locations in six homes. Measured decay rates were significantly correlated with house type and the number of bedrooms. The observed decay rates were higher in multiple-family homes and homes with fewer than three bedrooms. Homes with higher surface-area-to-volume ratios had higher decay rates. The ratio of indoor-to-outdoor ozone concentrations in homes not using air conditioning and open windows was 68 + 18%, while the ratio of indoor-to-outdoor ozone was less than 10% for the homes with air conditioning in use.  相似文献   

19.
The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Res. 30 (1994) 125]. We modified the method in that the macroscopic interface length was used instead of the system width. Methods to determine the macroscopic and the microscopic interface length are given. Lab experiments of dense nonaqueous phase liquid (DNAPL) penetrating into water-saturated glass beads were carried out in a two-dimensional (2-D) transparent chamber. The displacement processes were recorded using a 35-mm camera or a video camera, which was directly connected to and controlled by a computer. Unlike the method of Chang et al. (1994), the modified method used here gives a constant value of the effective interfacial tension over time. The predicted wavelengths of fingering are relatively close to those observed except for the fine beads.  相似文献   

20.
Air quality models are currently feasible approaches to prevent air pollution episodes. From one of the first source-oriented modelling approaches for air pollution forecasting (Souto et al., 1994, 1996, 1998), a new decision support system for air quality management, SAGA, was developed to provide support to As Pontes Power Plant (APPP) staff. SAGA can provide air pollution forecasts and manage meteorological and air quality measurements. Power plant decisions are supported by the results of a non-hydrostatic meteorological model (ARPS, Xue et al., 2001) to produce Meteorological Forecasts (MFs), and to be coupled to different Lagrangian dispersion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号