首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
气象因素对北京市大气颗粒物浓度影响的非参数分析   总被引:15,自引:4,他引:11  
利用2005年9月—2006年9月北京市大气颗粒物分级(不同粒径)监测资料和同期分时段气象观测数据,采用非参数分析(Spearman秩相关系数)法对北京市3种粒径大气颗粒物在不同季节的浓度水平与气象因素的影响进行了研究.结果表明:不同季节影响颗粒物质量浓度的气象因素各不相同;春季ρ(PM2.5),ρ(PM2.5~10)和ρ(PM10)都与气压呈显著负相关;夏季颗粒物质量浓度受降水影响很大;秋、冬季ρ(PM2.5)和ρ(PM10)均与日照时数呈显著负相关;冬季ρ(PM2.5),ρ(PM2.5~10)和ρ(PM10)均与平均风速呈显著负相关,与气温、相对湿度呈显著正相关. 细粒子和粗粒子质量浓度对气象因素变化的响应程度也有较大区别. 春、夏季地面平均风速对粗粒子质量浓度的影响比细粒子显著,ρ(PM2.5)/ρ(PM10)随风速增加而增大;秋季日照时数对细粒子质量浓度的影响比粗粒子更显著,ρ(PM2.5)/ρ(PM10)随日照时数增加而减小;冬季相对湿度对粗粒子质量浓度的影响比细粒子显著,ρ(PM2.5)/ρ(PM10)随相对湿度增加而减小.   相似文献   

2.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

3.
天津市PM10, PM2.5和PM1连续在线观测分析   总被引:9,自引:2,他引:7       下载免费PDF全文
利用2010年9月1日─11月30日在中国气象局天津大气边界层观测站采集的ρ(PM10),ρ(PM2.5)和ρ(PM1)数据,分析了观测期间可吸入颗粒物的统计特征,结合同期气象观测资料,分析了典型天气条件下ρ(PM10),ρ(PM2.5)和ρ(PM1)的日变化特征及与风速、风向的关系. 结果表明:观测期间,ρ(PM10)日均值有超过1/2的天数超过《国家环境空气质量标准》(GB 3095─1996)二级标准限值;ρ(PM2.5)有63 d超过美国国家环境保护局(US EPA)1997标准限值,超标率高达76.8%;不同天气条件下,ρ(PM10),ρ(PM2.5)和ρ(PM1)日变化特征明显,三者一般在大雾或扬沙/浮尘天气条件下出现高值,有降水过程时出现低值;可吸入颗粒物以粗粒子(PM2.5~10)和PM1为主,PM2.5~10,PM1~2.5和PM1主要分布在风速小于3 m/s,风向为225°~280°和70°~110°范围内;风速大于3 m/s时,ρ(PM2.5~10)和ρ(PM1~2.5)有所增加. ρ(PM10),ρ(PM2.5)和ρ(PM1)未出现周末效应,但存在明显的周内变化.   相似文献   

4.
鞍山大气颗粒物浓度的变化特征   总被引:2,自引:1,他引:1  
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用.   相似文献   

5.
北京地区PM10和PM2.5质量浓度的变化特征   总被引:40,自引:4,他引:36  
北京市区2003-01-16—04-30PM10和PM2 5的监测结果表明,虽然ρ(PM10),ρ(PM2 5)的变化幅度较大,但是其变化趋势非常相似。PM10,PM2 5质量浓度的日变化呈双峰特征分布。ρ(PM2 5) ρ(PM10)的平均值为56 6%,说明可吸入颗粒物(PM10)中细粒子(PM2 5)的含量大于粗粒子(PM2 5~10)。   相似文献   

6.
苏州城区能见度与颗粒物浓度和气象要素的相关分析   总被引:9,自引:3,他引:6  
利用苏州市2009年9月─2010年5月的颗粒物(包括黑碳,PM2.5和PM10)质量浓度、能见度、相对湿度、风速、风向、气温等观测资料,分析了苏州城区能见度与颗粒物质量浓度及气象要素的相关关系.结果表明:ρ(黑碳),ρ(PM2.5)和ρ(PM10)与能见度的r(相关系数)分别为-0.465,-0.359和-0.238,这3种颗粒物中,能见度与ρ(黑碳)的相关性最显著.当相对湿度≤60%时,ρ(黑碳),ρ(PM2.5)和ρ(PM10)与能见度的r分别为-0.675,-0.411和-0.364.相对湿度较低时,颗粒物与能见度相关性较好.能见度与温度、风速的r分别为0.132和0.188,与相对湿度的r为-0.632.用颗粒物质量浓度和气象要素建立的能见度多元线性回归模型效果不好,在该模型基础上用ρ(黑碳),ρ(PM10)和相对湿度建立了能见度的多元二次回归模型,R(复相关系数)达到0.865,R2(复决定系数)达到0.749.   相似文献   

7.
兰州市大气PM10健康影响效应的可预报性探讨   总被引:1,自引:1,他引:0  
使用质粒DNA评价法研究了兰州市大气PM10对质粒DNA的氧化性损伤能力及其与ρ(PM10)、采样期间的风速、相对湿度等气象要素之间的关系.结果表明:兰州市大部分PM10对质粒DNA的氧化性损伤能力与ρ(PM10)呈正相关.兰州市PM10全样对质粒DNA的氧化性损伤能力与采样期间的相对湿度和平均风速分别呈正相关和负相关,相关系数分别为0.531和-0.673.通过分析PM10对质粒DNA的氧化性损伤原因可知,PM10对人体健康的影响效应可用便于预报的ρ(PM10)、气象要素(相对湿度和风速等)等进行表征,即其可能具有可预报性.   相似文献   

8.
北京市冬春季大气颗粒物的粒径分布及消光作用   总被引:7,自引:2,他引:5  
2004年1─5月,在北京市区连续监测了大气环境中ρ(PM10),ρ(PM2.5),ρ(PM1)和ρ(TSP),以及大气能见度、地面气象要素.结果表明:春节期间颗粒物中细粒子所占的比例较高,ρ(PM1)/ρ(PM2.5)为0.81,ρ(PM10)/ρ(TSP)为0.61;而沙尘期其值分别为0.55和0.28.不同粒径的颗粒物质量浓度均呈在明显日变化,其夜间浓度峰值高于早晨交通繁忙时段.根据经验公式,将大气能见度换算为大气消光系数,并导出颗粒物消光系数.结果表明:颗粒物消光系数与颗粒物质量浓度呈显著正相关.进一步定义了颗粒物质量浓度消光比(CEP),用来表征颗粒物的污染特征.统计分析结果表明:当CEP<103时,颗粒物质量浓度很低,PM2.5所占比例较高,代表了有利于污染扩散的气象条件;当CEP>167,颗粒物质量浓度高,但细粒子比(ρ(PM2.5)/ρ(PM10))稳定在0.5~0.7,湿度也稳定在20%~50%,代表了不利于污染扩散的气象条件.   相似文献   

9.
秋季嘉兴PM2.5质量浓度特征分析   总被引:3,自引:3,他引:0  
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

10.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

11.
福建省沿海地区春季一次近地层O3超标成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
福建省沿海地区春季ρ(O3)较高且超标天数较多,为研究春季ρ(O3)超标的天气学成因,选取2017年4月26日-5月1日O3污染过程,利用统计对比和聚类分析方法,将全过程分成污染前、污染维持和污染后3个阶段,再将污染维持阶段分为4个区,利用ρ(O3)和ρ(PM2.5)小时均值资料,结合天气形势和气象要素场变化,分析此次O3污染的主要特点.结果表明:①此次O3污染与天气形势关系密切,在冷高压(4月28-29日)控制下,光化学反应条件有利,太阳辐射强、日照时间超过11 h,08:00起ρ(O3)上升速率为15~20 μg/(m3·h),ρ(O3)最大8 h滑动平均值[简称"ρ(O3)-max-8 h"]超过GB 3095-2012《环境空气质量标准》二级标准限值,但大气扩散条件好,ρ(PM2.5)日均值未超过一级标准限值,ρ(O3)超标原因为光化学反应所致,并且ρ(O3)分布有明显的日变化规律.②在锋前暖区(4月26日08:00-16:00)及变性冷高压(4月30日-5月1日)控制下,光化学反应剧烈,08:00起ρ(O3)上升速率为25~35 μg/(m3·h),天气静稳且大气扩散条件差,本地生成的O3在近地层累积效应明显,4月30日ρ(O3)小时均值和ρ(O3)-max-8 h达到过程峰值,ρ(PM2.5)日均值超过GB 3095-2012二级标准限值,ρ(O3)-max-8 h超过三级标准限值,空气质量达中度污染,ρ(O3)超标原因为光化学反应加本地累积所致,并且ρ(O3)分布也有明显的日变化规律.③受强冷空气影响,4月26日20:00-24:00福建省沿海地区的6个城市ρ(O3)不降反升,22:00-24:00 ρ(O3)8 h滑动平均值陆续达到一天中的最高值;4月27日ρ(O3)维持在70~140 μg/m3之间,ρ(O3)分布没有明显的日变化规律.研究显示,导致福建省沿海地区春季O3污染天气的成因是多种因素共同作用的结果.   相似文献   

12.
基于2015~2020年京津冀地区生态环境监测数据和多源气象数据,分析了北京地区0~3km中低空垂直风切变在不同PM2.5等级下的演变特征。结果表明,风速日变化特征随着PM2.5浓度升高而逐渐减弱,PM2.56级污染时近地面风速日变化基本消失,甚至反向变化;白天边界层风速增大时段对应10m/(s·km)以下的风切变,20:00后增大至12~14m/(s·km),该现象随着PM2.5污染加重变得更为显著,白天时段近地层垂直风切变较小值(<6m/(s·km))维持,可能是污染严重的信号之一;基于旋转经验正交函数分解法(REOF),将污染日下中低空垂直风切变分为无扰动型和压缩型,压缩型低压强度略强于无扰动型,无扰动型的PM2.5浓度均值、峰值较压缩型更高,逆温强于压缩型,另外,无扰动型PM2.5浓度增长期和边界层高度(PBLH)反向变化,压缩型PM2.5浓度增长期和PBLH同向变化。  相似文献   

13.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

14.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。  相似文献   

15.
大气环境管理平台是目前我国城市大气环境管理的重要手段.利用气象、空气质量、污染源等多源异构数据资料,以模型集成分析的方法,针对沧州市的消峰和污染减排问题,开发了大气环境管理平台(APP),并对沧州市大气污染过程进行综合分析和验证.以沧州市2019年1月27-30日两次大气污染过程为例进行分析,结果表明:①污染过程1(2019年1月27日14:00-1月28日02:00)中ρ(PM2.5)/ρ(PM10)平均值为0.59,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为37.0 μg/m3、66.7 μg/m3和1.5 mg/m3;污染过程2(1月29日10:00-1月30日09:00)中ρ(PM2.5)/ρ(PM10)平均值为0.61,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为38.5 μg/m3、67.7 μg/m3和1.8 mg/m3,说明加强对前体物的控制是削弱重污染时段ρ(PM2.5)的重要途径.②污染过程1的相对湿度在重度污染时段增长显著,污染过程2中相对湿度有10 h在70%以上;同时,在此期间风速较小,近地面逆温层较厚,从而加速了颗粒物吸湿增长和二次转化,说明高湿、低风速等气象条件是形成重污染天气的主要原因之一.③源解析结果表明,外来源的平均贡献率为44.73%,本地源的平均贡献率为55.27%,本地工业源、民用源、交通源和电力源贡献率分别为42.20%、11.97%、1.00%和0.10%,说明重污染期间沧州市受到周边区域传输具有一定的可能性,本地源的贡献主要来自工业源和民用源.   相似文献   

16.
广州市交通干线附近细颗粒污染特征   总被引:3,自引:2,他引:1  
利用中山大学大气环境监测平台数据,对广州市交通干线附近的ρ(PM2.5)和ρ(PM1)进行了统计学分析,以研究交通干线附近细颗粒污染特征及变化规律. 结果表明:2008—2012年广州市PM2.5超标严重,但ρ(PM2.5)有所下降. 受季节性污染源及气象因素影响,广州市夏季ρ(PM2.5)平均值为42μg/m3,明显低于春、秋、冬三季. ρ(PM2.5)在工作日与周末差异明显,周末明显高于工作日,而ρ(PM1)在工作日与周末差异不明显. ρ(PM2.5)与ρ(PM1)日变化趋势基本一致,整体上呈白天低、夜晚高,上午低、下午高的特征. ρ(PM2.5)日变化呈单峰,19:00左右达到最大值(53μg/m3);而ρ(PM1)呈双峰变化,在20:00左右达到高峰值(43μg/m3),上午09:00左右也有一小峰值(37μg/m3). ρ(PM2.5)和ρ(PM1)的相关性较好,R(相关系数)为0.94,PM1是PM2.5的主要构成颗粒,所占比重平均值为0.65. ρ(PM2.5)和ρ(PM1)均与交通流量存在相关性,在白天和夜晚变化趋势相一致,但交通流量白天与ρ(PM2.5)更为密切,夜晚则与ρ(PM1)更为密切.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号