首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The philopatric larval dispesal and small effective population sizes characteristic of many clonal species should promote the development of significant small-scale genetic structure within populations as a result of isolation-by-distance. We used spatial autocorrelation statistics to detect genetic structure, arising from both clonal reproduction and philopatric dispersal of sexual propagules, for five allozyme loci within populations of the soft coral Alcyonium sp. In a population on Tatoosh Island, Washington, USA, sampled in 1991/1992, we found significant positive spatial autocorrelation at all loci among individuals separated by <40 cm, reflecting the presence of significant smallscale genetic structure due to associations among clonemates. For 4 of 5 loci, however, we detected no significant spatial autocorrelation among the different clones within this population over distances of 1 to 40 m. Analysis of soft-coral populations from six additional, topographically diverse sites in the north-east Pacific also did not reveal significant spatial autocorrelation among clones at any loci. This general lack of spatial autocorrelation of genotypes among clones suggests that significant small-scale genetic structure has not arisen in populations of Alcyonium sp. as a consequence of isolation-by-distance.  相似文献   

2.
Variation in maternal reproductive traits was examined in field and reared populations of a geographically widespread reef fish, Pomacentrus coelestis (Pomacentridae), drawn from three different latitudes in Japan. Size-specific clutch size and clutch weight of wild fish increased with increasing latitude. Conversely, latitudinal variation in egg size of wild fish was obscure in same-season comparisons, probably because of the temperature effect on egg size. Common-environment experiments conducted at three temperatures showed that egg size decreased with increasing temperature in all populations. In the experiments, egg size, clutch size and clutch weight differed among populations at all temperatures, showing clear latitudinal clines. Females from low latitude spawned larger eggs at every experimental temperature. Size-specific clutch size and weight were greater in females from high latitude. Thus, the northern fish had a larger reproductive output per spawning and a larger number of smaller eggs in a spawning. Such interpopualtion variation in this fish is likely to be partially genetically based, although environmental effects on the variation cannot be entirely ruled out. This study provides evidence of potential latitudinal variation in the egg size and number in a coastal fish, by common-environment experiments. The close correspondence between latitudes and these maternal reproductive traits may be a consequence of local adaptation.  相似文献   

3.
Sponges display a variety of reproductive strategies that have the potential to influence population genetic structure. Histological examination of ten reproductive individuals of the Western Australian sponge Haliclona sp. showed that this species broods embryonic larvae that are potentially limited in dispersal capabilities. Because sponges have the potential to propagate in a number of modes, allozyme electrophoresis was used to assess the relative importance of asexual and sexual reproduction to recruitment, and to quantify genetic subdivision over different spatial scales. Tissue samples from 227 sponges were collected from reefs within two areas 400 km apart: Hamelin Bay and Rottnest Island. Contrary to expectations for highly clonal populations, genotypic diversity within sites was high, no linkage disequilibrium was found, and there was no evidence of genotypic clustering within reefs. There was no genetic evidence that asexual reproduction is important for the maintenance of populations. Genetic comparisons were consistent with mixing of sexually produced recruits within reefs, on a scale up to a few hundred metres, but significant genetic subdivision between reefs (FST=0.069 at Hamelin Bay, 0.130 at Rottnest Island) indicated that water gaps of several hundred metres are effective at preventing dispersal. Subdivision between the two areas, separated by 400 km, was moderately greater (FST=0.142) than within, but the same alleles were predominant in the two areas. These genetic patterns are consistent with limited dispersal capabilities of brooded larvae.Communicated by G.F. Humphrey, Sydney  相似文献   

4.
5.
Genetic diversity and genetic structure in a population of the brown seaweed Halidrys dioica Gardner were evaluated in five sites in southern California, USA, in 1991, using isozyme electrophoresis. H. dioica is relatively long-lived and has an outcrossing mating system and floating reproductive fronds with the potential for longdistance gamete dispersal. Because these characteristics are hypothetically important in determining genetic diversity and structure, we predicted that genetic diversity would be high and genetic structure would be exhibited only at relatively large geographic scales in H. dioica populations. The data were consistent with the prediction: genetic diversity (% polymorphic loci, no. of alleles/locus, average expected heterozygosity) was high compared to that of other seaweed species. Genetic structure (Wright's F statistics, Nei's genetic distance, point-pattern analysis of alleles) was low within and among distinct rocky reefs over 4 km of coast but high in subpopulations separated by 90 km. Life-history characteristics may be useful predictors of genetic diversity and structure in seaweed populations, but information on selection regimes, long-distance dispersal, and the extent of clonal propagation, for example, are critically lacking.  相似文献   

6.
We investigated the genetic diversity and genetic structure of southern California populations of the common intertidal fucoid seaweed Pelvetia fastigiata, (J. Ag.) De Toni by means of allozyme electrophoresis and estimates of genetic neighborhood area and size, which are the first for seaweeds. We predicted that P. fastigiata populations would exhibit relatively low genetic diversity and high genetic structure because the seaweed is monoecious and has limited dispersal of gametes and zygotes. This prediction was supported; genetic diversity indices were all low compared to other seaweeds studied, but high genetic structure was evident particularly within individual reefs. Geospatial statistical analyses (second-order analyses) revealed clustered distribution of glucose-6-phosphate isomerase (GPI) alleles at the scale of 1 to 6 m within three reefs. The rare alleles were distributed only at the landward third of the reefs. Genetic neighborhood area (2.3 m2) and size (133 individuals) were estimated from parent-offspring dispersal distributions of gametes and zygotes from attached thalli and also detached reproductive fragments, which contributed very little to the effective neighborhood size. The neighborhood size was in the small theoretical range in which genetic drift could be responsible for the within-reef genetic structure. This result was equivocal, because the stereotyped distribution of rare alleles on the tips of each reef was highly unlikely to be due to random events (6.9×10-24). These results emphasize (1) the importance of allele mapping in addition to spatial statistics to elucidate genetic structure, and (2) that interpretation of genetic-structure statistics as evidence for gene flow can be complicated, even when supported with independent estimates of gene flow, if data are lacking on selection and sporadic migration events. The emerging pattern of low levels of polymorphisms in brown seaweeds will limit the use of Wright's F-statistics and will require alternative, more direct techniques for the analysis of mechanisms responsible for population genetic structure.  相似文献   

7.
We used DNA microsatellites to investigate temporal and spatial patterns of local genetic differentiation and relatedness in a solitary mammal, the dusky-footed woodrat (Neotoma fuscipes). Patterns of genetic variation were measured relative to spatial clusters, or neighborhoods, of woodrats. We detected significant genetic differentiation among woodrat neighborhoods in two populations spanning multiple habitat types and densities. Estimates of θ ST among neighborhoods ranged 0.034–0.075 and were comparable to levels reported in social mammals. Genetic differentiation at such a local scale is noteworthy because it occurred in the absence of any physical barriers to gene flow, suggesting that the patterns observed are linked to the nonrandom patterns of mating and dispersal that characterize woodrat social structure. Genetic differentiation and relatedness among neighborhoods were even higher when only resident females were analyzed. These results are consistent with a pattern of female philopatry and male-biased dispersal in woodrats. Geographic distance and relatedness were inversely correlated in adult females at intermediate densities, but not at low densities. Nonetheless, matrilineal genetic structure was apparent even at low woodrat densities based on estimates of θ ST among neighborhoods of resident females that were significantly greater than zero and consistently greater than estimates including all individuals. In summary, this study demonstrates a matrilineal genetic structure in dusky-footed woodrats. In addition, our results support the idea that intermediate densities may be better at facilitating the formation of spatial kin clusters than either extreme. An erratum to this article can be found at  相似文献   

8.
Laurila A  Lindgren B  Laugen AT 《Ecology》2008,89(5):1399-1413
Antipredator defenses are expected to decrease toward higher latitudes because predation rates are predicted to decrease with latitude. However, latitudinal variation in predator avoidance and defense mechanisms has seldom been studied. We studied tadpole antipredator defenses in seven Rana temporaria populations collected along a 1500-km latitudinal gradient across Sweden, along which previous studies have found increasing tadpole growth and development rates. In a laboratory common garden experiment, we measured behavioral and morphological defenses by raising tadpoles in the presence and absence of a predator (Aeshna dragonfly larva) in two temperature treatments. We also estimated tadpole survival in the presence of free-ranging predators and compared predator densities between R. temporaria breeding ponds situated at low and high latitudes. Activity and foraging were generally positively correlated with latitude in the common garden experiment. While all populations responded to predator presence by decreasing activity and foraging, high-latitude populations maintained higher activity levels in the presence of the predator. All populations exhibited defensive morphology in body and tail shape. However, whereas tail depth tended to increase with latitude in the presence of predator, it did not change with latitude in the absence of the predator. Predator presence generally increased larval period and decreased growth rate. In the southern populations, predator presence tended to have a negative effect on metamorphic size, whereas in the northern populations predators had little or a positive effect on size. Latitude of origin had a strong effect on survival in the presence of a free-ranging predator, with high-latitude tadpoles experiencing higher mortality than those from the low latitudes. In the wild, predator densities were significantly lower in high-latitude than in mid-latitude breeding ponds. Although the higher activity level in the northern populations seems to confer a significant survival disadvantage under predation risk, it is probably needed to maintain the high growth and development rates. However, the occurrence of R. temporaria at high latitudes may be facilitated by the lower predator densities in the north.  相似文献   

9.
Mating system and dispersal patterns influence the spatio-genetic structure within and between populations. Among mammals, monogamy is rare, and its socio-genetic consequences have not been studied in detail before. The goal of our study was to investigate population history, demographic structure, and dispersal patterns in a population of pair-living fat-tailed dwarf lemurs, Cheirogaleus medius, a small, nocturnal primate from western Madagascar, and to infer their underlying behavioral mechanisms. Tissue samples for DNA extraction were obtained from a total of 140 individuals that were captured in two subpopulations about 3 km apart. Analyses of mtDNA variability at the population level revealed very low levels of genetic variability combined with high haplotype diversity, which is indicative of a recent population bottleneck. We found no evidence for spatial clustering of same-sexed individuals with identical haplotypes within each of two subpopulations but significant clustering between them. Thus, a high level of local subpopulation differentiation was observed (F ST = 0.230). The sexes showed equal variances in the number of individuals representing each haplotype, as well as equal levels of aggregation of identical haplotypes. Hence, both sexes disperse from their natal area, one pattern expected in a pair-living mammal. There is a possibility of behavioral and social flexibility in this species, however, because we documented pronounced differences in density and sex ratio between the two subpopulations, suggesting that single study sites or populations may not be representative of a given local population or even species.  相似文献   

10.
Spatial models of genetic structure and potential gene flow were determined for five populations of Balanophyllia europaea, a simultaneous hermaphroditic and brooding coral, endemic to the Mediterranean. Six allozyme loci indicated a genetic structure that departed markedly from Hardy–Weinberg equilibrium, with a significant lack of heterozygotes. The genetic structure observed supports the hypothesis that self-fertilisation characterises the reproductive biology of B. europaea. Populations at small spatial scales (8–40 m) are genetically connected, while those at large scales (36–1,941 km) are genetically fragmented; the genetic differentiation of the populations is not correlated to geographic separation. This spatial model of genetic structure is compatible with an inbreeding mating system. Furthermore, it is also consistent with the expected dispersal potential of swimming larvae of brooding corals, i.e. larvae that are able to produce significant gene flows only within limited spatial scales.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

11.
Genetic variation in the mangrove periwinkle Littorina angulifera   总被引:2,自引:0,他引:2  
Twenty populatios of Littorina angulifera, inhabiting islands composed of the mangrove tree Rhizophora mangle, were assayed at an esterase locus to determine whether genetic differentiation was associated with distance between populations. It was predicted, on the basis of larval dispersal in this species, that genetic differentiation between populations on islands separated by long distances should be greater than those on islands located near each other. A chi0square test of homogeneity revealed significant differences in esterase gene frequencies among the 20 island populations. However, there was no association of distance between islands and genetic heterogeneity. In addition, a cline in gene frequency was found to be assiciated with latitude. Factors responsible for the observed pattern of heterogeneity at the esterase locus are discussed.  相似文献   

12.
The spatial distribution of genetic variability depends on the spatial patterns of clonal and sexual reproduction, gene flow, genetic drift and natural selection. Species with restricted dispersal may exhibit genetic structuring within populations with immediate neighbours being close relatives, and may show differentiation among populations. Genetic structuring of a species may have important genetic, evolutionary and ecological consequences including distance-dependent mating success. In this study we used microsatellite markers to show that clones of Zostera marina in a population in the Ria Formosa, Portugal, were aggregated and covered distances of up to 3–4 m. Clones within 4 m of each other exhibited significant and positive coancestry values, reflecting the limited seed dispersal of this species. Hand-pollinations between near (0–10.9 m), intermediate (11–32 m) and far (15 km) individuals resulted in similar levels of seed set, although the near pollinations had higher, although not statistically significant, levels of seed abortion during maturation. Seeds from intermediate-distance pollinations had a significantly higher proportion of seeds germinate and shorter germination time than both the near and far seeds. Similarly, the average number of seedlings produced per pollination, used as an overall estimate of fitness, was significantly greater for the intermediate distance when compared to both near and far pollinations. These results suggest that the genetic structuring observed may result in both inbreeding and outbreeding depression, which gives rise to an intermediate optimal outcrossing distance.  相似文献   

13.
The genetic structure of populations of the corals Pocillopora damicornis and Acropora palifera was examined in three habitats at One Tree Island during March and April 1993, using electrophoretically detectable variation at six allozyme loci. There were significant genetic differences among populations of P. damicornis within each of the reef crest, lagoon and microatoll habitats. The level of differentiation among populations was similar in each of the habitats. Differences between populations of P. damicornis from lagoon and microatolls were no greater than that within habitats, but genetic differentiation of these from crest populations was much higher. There was no difference in the genetic composition of A. palifera populations within or between the lagoon and microatolls, the only habitats where this species was found. Both coral species had observed:expected (G O:GE) genotypic diversity rations >0.80, indicating predominantly sexual reproduction. These data, the high genotype diversity and general conformance of genotype frequencies to those expected under conditions of Hardy-Weinberg, suggested panmixis at each site. The high degree of sexual reproduction in the P. damicornis populations is unusual for a species where asexual reproduction has been the dominant mode of reproduction reported to date. Gene flow in both species was considerable between the lagoon and the closed microatolls. The genetic differences between populations of P. damicornis in these habitats and the reef crest may reflect the relative isolation of all populations within the closed One Tree Lagoon from those outside. However, local currents appear to offer effective means of dispersal between the habitats, suggesting that the genetic differences result from natural selection in the different environments within One Tree Lagoon and the reef crest.  相似文献   

14.
The mechanisms driving genetic structure in marine systems are elusive due to the difficulty of identifying temporal and spatial barriers to dispersal. By studying marine invertebrate species with limited dispersal potential, genetic structure can be directly related to physical and biological factors restricting connectivity. In the northwest Atlantic, the benthic brood-rearing amphipod Corophium volutator is distributed across basins with distinct circulation patterns and has the potential to disperse passively during its adult stage. We analyzed spatial genetic variation and migration rates across C. volutator’s North American range with sequence data for mitochondrial DNA and three novel nuclear markers using frequency and coalescent-based methods. We found low genetic differentiation within basins, but strong subdivision within the Bay of Fundy and a striking biogeographic break between the Bay of Fundy and Gulf of Maine, suggesting that genetic drift may act on populations in which connectivity is restricted due to the limitation of passive dispersal by hydrological patterns.  相似文献   

15.
We used random amplified polymorphic DNA (RAPDs) to examine small-scale spatial genetic structure in the red alga Delisea pulchra (Greville) Montagne at two locations near Sydney, Australia. We examined genetic structure among plants at four spatial scales ranging from 2 km apart down to <50 cm apart between locations, among sites within locations, among quadrats within sites, and among plants within quadrats. Haploid stages of D. pulchra were absent from the populations studied, suggesting that they are maintained through asexual reproduction of diploid plants. Consistent with this, we found that 19 RAPD phenotypes scored in this study had multiple individuals, indicating the presence of clones in these populations. However, there were no RAPD phenotypes common to two locations separated by only 2 km. Analysis of molecular variance revealed that strong genetic differences occurred between plants from these two locations, with 46.3% of the total genetic variation occurring at this scale, most probably reflecting limited gene flow. Within each location, <25% of the genetic variation was attributable to differences among sites or quadrats, indicating gene flow at those smaller scales. Most of the variation within each location occurred at the smallest spatial scale, among plants within 0.25 m2 quadrats. Nonetheless, some pairwise genetic distances (φST) between sites or quadrats within locations were large, indicating some genetic divergence on smaller scales. Genetic distance was independent of spatial distance within both locations, suggesting that fine-scale differences within locations were most probably caused by variation in fine-scale patterns of water movement or fine-scale natural selection. We assessed the impact of one potential selective agent, grazing sea urchins, on the fine-scale genetic structure of D. pulchra. There was no evidence that grazing by sea urchins affected the genetic structure of D. pulchra. In combination with demographic data, our results indicated that local populations of D. pulchra within locations were relatively open and that fine-scale genetic structure was probably constrained by gene flow. At the larger scale however, strong genetic differentiation indicated little gene flow between locations and restricted dispersal of spores. Received: 22 April 1999 / Accepted: 29 November 1999  相似文献   

16.
Prior studies of the hydrothermal vent mussel Bathymodiolus thermophilus (Bivalvia: Mytilidae), provided conflicting predictions about the dispersal ability and population structure of this highly specialized species. Analyses of morphological features associated with its larval shells revealed a feeding larval stage that might facilitate dispersal between ephemeral vent habitats. In contrast, an allozyme study revealed substantial genetic differentiation between samples taken from populations 2370 km apart on Galápagos Rift (Latitude 0°N) and the East Pacific Rise (13°N). To resolve the discrepancy between these studies, we examined allozyme and mitochondrial (mt) DNA variation in new samples from the same localities plus more recently discovered sites (9° and 11°N) along the East Pacific Rise. Although analysis of 26 enzyme-determining loci revealed relatively low levels of genetic variation within the five populations, no evidence existed for significant barriers to dispersal among populations. We estimated an average effective rate of gege flow (Nm) of 8 migrants per population per generation. Two common mtDNA variants predominated at relatively even frequencies in each population, and similarly provided no evidence for barriers to gene flow or isolation-by-distance across this species' known range. Larvae of this species appear to be capable of dispersing hundreds of kilometers along a continuous ridge system and across gaps separating non-contiguous spreading centers.  相似文献   

17.
Abstract: The Coral Triangle is the global center of marine biodiversity; however, its coral reefs are critically threatened. Because of the bipartite life history of many marine species with sedentary adults and dispersive pelagic larvae, designing effective marine protected areas requires an understanding of patterns of larval dispersal and connectivity among geographically discrete populations. We used mtDNA sequence data to examine patterns of genetic connectivity in the boring giant clam (Tridacna crocea) in an effort to guide conservation efforts within the Coral Triangle. We collected an approximately 485 base pair fragment of mtDNA cytochrome c oxidase 1 (CO1) from 414 individuals at 26 sites across Indonesia. Genetic structure was strong between regions (φST=0.549, p < 0.00001) with 3 strongly supported clades: one restricted to western Sumatra, another distributed across central Indonesia, and a third limited to eastern Indonesia and Papua. Even within the single largest clade, small but significant genetic structure was documented (φST=0.069, p < 0.00001), which indicates limited gene flow within and among phylogeographic regions. Significant patterns of isolation by distance indicated an average dispersal distance of only 25–50 km, which is far below dispersal predictions of 406–708 km derived from estimates of passive dispersal over 10 days via surface currents. The strong regional genetic structure we found indicates potent limits to genetic and demographic connectivity for this species throughout the Coral Triangle and provides a regional context for conservation planning. The recovery of 3 distinct evolutionarily significant units within a well‐studied taxonomic group suggests that biodiversity in this region may be significantly underestimated and that Tridacna taxa may be more endangered than currently recognized.  相似文献   

18.
Limited gene flow via the restricted dispersal of larvae and gametes is expected to result in the genetic differentiation of populations of clonal invertebrates on small spatial scales. However, occasional dispersal events over greater distances may generate sufficient gene flow to maintain genetic homogeneity. We applied a spatial autocorrelation approach that does not require a priori definitions of subdivision boundaries to examine genetic differentiation within a continuous population of the colonial ascidian Botryllus schlosseri (Pallas) at two allozyme and five polychromatism loci. Colonies were sampled in July 1992, on a 12 by 18 m grid superimposed on a shallow subtidal (1 to 3 m) population in the Damariscotta River estuary in Maine, USA. Low but significant levels of positive autocorrelation were detected over very small spatial scales (<5 m), with negative autocorrelation occurring on larger scales (>8 m). This pattern indicates significant genetic differentiation over distances of 8 to 21 m, and is consistent with genetic drift and inbreeding creating small scale genetic structure. Received: 18 October 1999 / Accepted: 11 July 2000  相似文献   

19.
The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers. However, regional population structure was significantly lower in all species with planktonic larvae, including H. orbiculare, than in the direct developers. Moreover, nested clade analysis identified demographic histories resulting from low levels of gene flow (isolation by distance and allopatric fragmentation) in the direct developers only, and migration rates were significantly higher in all three species having planktonic larvae than in the direct developers. We conclude that the amount of genetic structure within marine biogeographic regions strongly depends on the presence or absence of free-swimming larvae. Whether such larvae are primarily exported or retained, whether they have long or short larval duration, and whether or not they are capable of active dispersal seems to have little effect on connectivity among populations.  相似文献   

20.
In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female , but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (Ne) shows that changes in dispersal distance offset changes in density, so that Ne remains constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号