首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A vertical (laterally integrated) two‐dimensional numerical model has been applied to study the hydrodynamic characteristics and salt water intrusion in the Tanshui River estuarine system. The cross‐sectional profiles measured in 1978 and 1994 are schematized for model simulations. Detailed model calibration and verification have been conducted with water surface elevations, tidal current, salinity distributions, and residual velocities measured. The overall performance of the model is in qualitative agreement with the available field data. The model was then used to study how hydrodynamics and salt water intrusion change in response to changes in bathymetry. The model simulations indicate that more tidal energy propagates into the estuarine system in 1994 because of the substantial increase in river cross‐sections. The limits of salt intrusion in 1994 extended farther inland than those in 1978. On the other hand, the extent of mangrove wetland in the lower estuary has increased over the past 20 years and is likely a result of the increased salinity in the estuary.  相似文献   

2.
为研究连云港埒子口海域潮流动力特征及其对周边海岸工程的响应,以及为治理埒子口闸下淤积问题提供参考,建立了基于有限体积法离散二维浅水方程的数值模型。采用实测水文资料对模型率定和验证,应用模型分析埒子口潮流动力特征和建设徐圩港防波堤和灌河口导堤后埒子口海域潮流动力的变化。模拟结果表明,建设工程后潮流动力变化较大,埒子口海域涨急流和落急流方向改变,涨、落潮平均流速均减小,距离工程区域越近,流速变化越大。埒子口海域潮流动力减弱将会加重上游挡潮闸的闸下淤积问题,致使埒子口排水不畅,进而增加沂北地区的洪涝风险,所以,相关部门应及时采取措施,保证埒子口排涝畅通。  相似文献   

3.
A three‐dimensional hydrodynamic model was applied to Lake Paldang, South Korea. The lake has three inflows, of which Kyoungan Stream has the smallest flow rate and poorest water quality. Since all drinking water intake stations are located near the confluence of Kyoungan Stream within the lake, this contaminated tributary may have a significant impact on the quality of drinking water sources. The optimum drinking water intake location was determined from the applied model. The model was calibrated and verified using the data measured under different hydrological conditions. The model results were in reasonable agreement with the field measurements in both calibration and verification. The circulation and spreading patterns of the incoming flows in the lake, as well as their composition ratios to the drinking water intakes were determined from the model, and three alternative intake locations were proposed. The simulation results suggested that the horizontal and vertical relocations of the intake aqueduct could significantly decrease the composition ratio of the contaminated water. From this study, it was concluded that the three‐dimensional hydrodynamic model could successfully simulate the temporal and spatial mixing patterns of incoming flows and become a useful tool in determining the optimum water intake location in Lake Paldang.  相似文献   

4.
ABSTRACT: Field data collected from the Feitsui Reservoir in Taiwan indicate that the water is at a stage between mesotrophic and eutrophic. Recent measurements such as total phosphorus, chlorophyll a and Secchi depth levels suggest that the water quality has been declining. A two‐dimensional, laterally averaged, finite difference hydrodynamic and water quality model was used to simulate the water quality in the Feitsui Reservoir in an effort to determine sound water quality management strategies. The model was calibrated and verified using data collected in 1996 and 1997. The calibrated model was used to simulate algal biomass (in terms of chlorophyll a) levels under various wasteload reduction scenarios. Model results show that 50 percent reduction of the total phosphorus load will improve the existing water quality, shifting the trophic status from eutrophic/mesotrophic to oligotrophic. The modeling effort has yielded valuable information that can be used by decision makers for the evaluation of different management strategies of reducing watershed nutrient loads.  相似文献   

5.
The Streamflow Synthesis and Reservoir Regulation (SSARR) model was calibrated and verified on the Madison and Gallatin watersheds in the upper Missouri River drainage. The study was performed to determine if the SSARR model could simulate snowmelt-runoff volumes to effect better operation of six multipurpose reservoirs on the Missouri River. Physical watershed characteristics and parameter sensitivity are incorporated into a procedure which expedites model calibration. Criteria are established to facilitate parameter development and to objectively evaluate calibration and verification results. A ratio of simulated to observed snowmelt-runoff volumes of the Madison River averaged 1.00 and 1.02 for calibration (N = 8 years) and verification (N = 6 years) with corresponding standard deviations of 0.08 and 0.13. Gallatin volume ratios averaged 0.99 and 0.95 for calibration (N = 7 years) and verification (N = 5 years) with respective standard deviations of 0.08 and 0.28.  相似文献   

6.
ABSTRACT: A two-layered confined-unconfined numerical model for flow and mass transport is developed for the San Jacinto Basin. The model structure is determined by the geological structure of the Basin and model parameters are calibrated using 20 years of historical records. The total number of historical head observations used for the flow model calibration is 1,117 and the total number of the estimated parameters is 91. The two-layered transport model is also calibrated using historical water quality records. Sensitivity analysis of the flow model shows that only 68 parameters (out of a total of 91) are relatively sensitive and reliable. However, the unreliable parameters (23 of them) are found to be insensitive and thus not significant to the prediction and management of conjunctive use of surface water and ground water. The developed flow model has been used to study the two proposed artificial recharge scenarios for the San Jacinto Basin. We have found that during a relatively dry condition, an artificial recharge rate of 80 acre-ft/day can be achieved during the recharge period October through January. However, for a relatively wet condition, only 80 percent of the proposed rate can be effectively stored in the Basin during these months.  相似文献   

7.
Abstract: This research investigates possible impacts of enlarged water body according to dam reconstruction on the hydrodynamics and water quality of the reservoir using a laterally averaged, two‐dimensional hydrodynamic and transport model, CE‐QUAL‐W2. The lake was formed by the artificial dam in 1983 for agricultural water supply and is currently under consideration of reconstruction so as to expand the volume of reservoir for flood control as well as water supply in downstream areas. To calibrate and validate the model, field‐collected data were compared with model predictions for water level fluctuations and water temperature during the years of 2001 (from January to December) and 2003 (from March to November). The model results showed a good agreement with field measurements both in calibration and verification. Utilizing the model, impacts of dam reconstruction on the thermal hydrodynamics and turbid current were predicted. From the model results, dam reconstruction limited the depth of thermal stratification below 10 meter and formed steep temperature gradient between epilimnion and hypolimnion. The restricted thermal stratification persisted up to the end of September. This result indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. In addition, the restricted thermal stratification caused vertical circulation of water mixing lower than 10 meter and isolated the upper water layer from the lower water layer which increased the volume of hypolimnetic water with low temperature. The vertical circulation near the surface also mitigated propagation of density plume within the depth of 10 m which would remain the hypolimnetic water clean.  相似文献   

8.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

9.
Abstract: Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper‐concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1‐h rainfall intensity and fire factor using 45 years of data (1938‐1983). In addition, a method for multi‐sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984‐2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001‐2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur.  相似文献   

10.
为了解近年南海明珠项目、葫芦岛、秀英港扩建工程等人工填海工程对海口湾冲淤变化的影响,基于FVCOM海洋数值模型,对研究区人工填海前后潮流场、波浪场及冲淤变化进行了数值模拟。人工填海后,综合各条件下的冲淤情况,海口湾受潮流和波浪共同作用大部分区域处于淤积状态,年淤积量预测值为0.1~1.0 m;白沙角等局部区域处于侵蚀状态,年冲刷量预测值为0.1~0.3 m;受海口湾人工填海工程的影响,秀英港航道的水动力条件减弱,对通航条件改善有利,需加强航道的水深监测和定时的清淤工作;在南海明珠人工岛南侧波影区泥沙堆积会形成向海的舌状的突出体,其两侧海岸形成侵蚀后退带,需人工补沙等措施以保证岸线稳定。  相似文献   

11.
To facilitate the rapid simulation of accidental pollution releases, the Delaware River Basin Commission has developed applications which completely automate data retrieval and processing for the development of a hydrodynamic model input file, as well as running the model. Overnight, every night, the applications retrieve from the internet multiple datasets for constructing freshwater inflow and tidal boundary time series. The hydrodynamic model is run automatically, using the recently written model input file. When no release has occurred, the hydrodynamic output file is not used and is simply overwritten on the following evening, from the updated hydrodynamic model run. Automating the hydrodynamic model portion of the simulation dramatically reduces the time required to simulate the transport of an accidental release to the Delaware Estuary.  相似文献   

12.
为了揭示悬浮泥沙(SSC)对水库水质的影响规律,对汾河水库进行样品收集和长期水质监测,采用水动力模型与泥沙转移和富营养化模型相结合的方法,将这三者关联耦合,并通过实测数据对模型进行参数率定和验证,分析含沙水和不含沙水中总氮(TN)、总磷(TP)、叶绿素a(Chla)、溶解氧(DO)四项指标,得出两者对水质造成的影响。结果表明:SSC对TN、TP的去除作用明显,对Chla、DO浓度分布影响较小,并计算了污染物的释放量以及贡献率,得出TP的负荷仅为16.47t,而贡献率高达25.25%。因此在汾河的污染控制方面应侧重削减磷,进而改善汾河地区的污染现状。  相似文献   

13.
为了揭示悬浮泥沙(SSC)对水库水质的影响规律,对汾河水库进行样品收集和长期水质监测,采用水动力模型与泥沙转移和富营养化模型相结合的方法,将这三者关联耦合,并通过实测数据对模型进行参数率定和验证,分析含沙水和不含沙水中总氮(TN)、总磷(TP)、叶绿素a(Chla)、溶解氧(DO)四项指标,得出两者对水质造成的影响。结果表明:SSC对TN、TP的去除作用明显,对Chla、DO浓度分布影响较小,并计算了污染物的释放量以及贡献率,得出TP的负荷仅为16.47t,而贡献率高达25.25%。因此在汾河的污染控制方面应侧重削减磷,进而改善汾河地区的污染现状。  相似文献   

14.
15.
Water resources in the Yangtze River Estuary (YRE), which is the vital water supply for Shanghai, decreased by approximately 2.45 Gm3 in 2006, the second‐worst recorded drought year. A numerical model was developed to investigate the effects of this extreme drought on pollutant transport processes in the YRE. The model was calibrated against observations and displayed good agreement. Residence time, a critical hydrodynamic indicator, was implemented to indicate pollutant transport processes. Numerical experiments were conducted to examine the possibly drought‐induced influences. The model results demonstrated that the influences on pollutant transport processes varied spatially and temporally, and these influences could partly explain the observed temporal and spatial variations of total nitrate in 2006. The area most susceptible to drought is in the north branch with 2‐11 days' extension of residence time. As the drought occurred in both the high and normal water periods, its influences were more significant during the normal water period with saltwater intrusion into the north branch. The drought also introduced a pollutant transport lag in timescale of approximately five days by diminishing the seaward advection flux with freshwater discharge. In 2006, the magnified tidal influence during the drought contributed more than usual to structuring pollutant transport, as the pollutant transport processes were intensely associated with tidal flow and tidal cycle.  相似文献   

16.
Abstract: Impact of watershed subdivision and soil data resolution on Soil Water Assessment Tool (SWAT) model calibration and parameter uncertainty is investigated by creating 24 different watershed model configurations for two study areas in northern Indiana. SWAT autocalibration tool is used to calibrate 14 parameters for simulating seven years of daily streamflow records. Calibrated parameter sets are found to be different for all 24 watershed configurations, however in terms of calibrated model output, their effect is minimal. In some cases, autocalibration is followed by manual calibration to correct for low flows, which were underestimated during autocalibration. In addition to normal validation using four years of streamflow data for each calibrated parameter set, cross‐validation (using a calibrated parameter set from one model configuration to validate observations using another configuration) is performed to investigate the effect of different model configurations on streamflow prediction. Results show that streamflow output during cross‐validation is not affected, thus highlighting the non‐unique nature of calibrated parameters in hydrologic modeling. Finally, parameter uncertainty is investigated by extracting good parameter sets during the autocalibration process. Parameter uncertainty analysis suggests that significant parameters show very narrow range of uncertainty across different watershed configurations compared with nonsignificant parameters. Results from recalibration of some configurations using only six significant parameters were comparable to that from calibration using 14 parameters, suggesting that including fewer significant parameters could reduce the uncertainty arising from model parameters, and also expedite the calibration process.  相似文献   

17.
Due to resource constraints, long‐term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of length of available calibration data on model parameterization and performance. The main objective of this study was to evaluate the impact of length of calibration data (LCD) on parameterization and performance of the Agricultural Policy Environmental eXtender model for predicting daily, monthly, and annual streamflow. Long‐term (1984‐2015) measured daily streamflow data from Rock Creek watershed, an agricultural watershed in northern Ohio, were used for this study. Data were divided into five Short (5‐year), two Medium (15‐year), and one Long (25‐year) streamflow calibration data scenarios. All LCD scenarios were calibrated and validated at three time steps: daily, monthly, and annual. Results showed LCD affected the ability of the model to accurately capture temporal variability in simulated streamflow. However, overall average streamflow, water budgets, and crop yields were simulated reasonably well for all LCD scenarios.  相似文献   

18.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) was used to evaluate the influence of woody plants on water budgets of semi‐arid rangelands in karst terrain. The model was configured for the hydrologic evaluation of the North Fork of the Upper Guadalupe River watershed and was calibrated and verified using measured flow data. Nash and Sutcliffe fit efficiencies for daily and monthly verification periods were 0.09 and 0.50, respectively. Streamflow, baseflow, and evapotranspiration (ET) rates were comparable to published field data. Simulated deep recharge was considerably higher than the published values for the Edwards Plateau. The model was then used to simulate conditions with existing brush cover and four different brush removal scenarios. Scenarios were created to represent existing brush and the removal of brush from only locations that were either covered by heavy brush, were on a moderate slope, or were in shallow soils. Resulting data was compared to previous studies of both field experiments and model simulations. Maximum brush removal resulted in a reduction in ET equal to 31.94 mm/yr depth over the entire basin, or 46.62 mm/yr depth over the treated area. Removal of heavy brush cover resulted in the greatest changes in evapotranspiration, surface runoff, base‐flow, and deep recharge. Slope was found to have the greatest effect on lateral subsurface flow.  相似文献   

19.
We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads.  相似文献   

20.
ABSTRACT: The Nonpoint Source Model (NPSM) was chosen for nonpoint source pollutant modeling within three different watersheds. The first step in using NPSM, hydrologic calibration, is discussed here for three 8‐digit Hydrologic Unit Codes (HUCs) from the White River Basin in Indiana (Driftwood HUC), the Albemarle‐Pamlico River Basin in Virginia and North Carolina (Contentnea HUC), and the Apalachicola‐Chattahoochee‐Flint River Basin in Alabama, Georgia, and Florida (Ichawaynochaway HUC). Model predicted flows were compared statistically with USGS gauge data at the HUC outflow points for an uncalibrated and calibrated model run for the period from January 1, 1990, through December 31, 1992, and a validation run for the period from January 1, 1993, through December 31, 1995. Least squares regression of NPSM predicted flows versus USGS gauge data were 0.75, 0.44, and 0.69 for the calibration runs and 0.71, 0.69, and 0.64 for the validation runs in the Driftwood, Contentnea, and Ichawaynochaway HUCs, respectively. Nash Sutcliffe coefficient values were not as strong, ranging from ?0.66 to 0.45 for the calibration runs and 0.31 to 0.37 for the validation runs of the model. The Ichawaynochaway HUC proved the most difficult to calibrate indicating that the model may not be as useful in some geographic locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号