首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys.  相似文献   

2.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

3.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   

4.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

5.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

6.
7.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

8.
ABSTRACT: Macroinvertebrate community data collected from streams in Wyoming were assessed at various scales: within one stream reach, between stream reaches within one stream, between streams, and between stream classes. Fourteen indices including number of individuals/m2, biomass/m2, number of taxa, Shannon's diversity index, and functional feeding group ratios were used to compare macroinvertebrates by stream reach and stream class. Statistical analysis indicated that for five of the 14 indices, significant variability occurred between macroinvertebrate communities within one reach. For two of the remaining nine indices there was significant variability between communities from several reaches within the same stream. For seven of the nine indices, there was significant variability among macroinvertebrate communities from streams of the same class. Variability among the macroinvertebrate communities from the three stream classes was significantly different for seven of the nine indices. ANOVA results suggest that macroinvertebrate communities from different samples within one reach and between reaches within one stream were more comparable than those from different streams and different stream classes.  相似文献   

9.
Visual‐based rapid assessment techniques provide an efficient method for characterizing the restoration potential of streams, with many focusing on channel stability and instream habitat features. Few studies, however, have compared these techniques to see if they result in differing restoration priorities. Three rapid assessment techniques were contrasted at three wild trout streams in western New York with different amounts of channel disturbance. Two methods focused only on geomorphic stability, whereas the third addressed physical habitat condition. Habitat assessment scores were not correlated with scores for either geomorphic assessment method and they varied more between channels with different degrees of disturbance. A model based on dynamic equilibrium concepts best explains the variation among the streams and techniques because it accounts for a stream's capacity to maintain ecological integrity despite some inherent instability. Geomorphic indices can serve as effective proxies for biological indices in highly disturbed systems. Yet, this may not be the case in less disturbed systems, where geomorphic indices cannot differentiate channel adjustments that impact biota from those that do not. Dynamically stable streams can include both stable and unstable reaches locally as characterized by geomorphic methods and translating these results into restoration priorities may not be appropriate if interpretations are limited to the reach scale.  相似文献   

10.
We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.  相似文献   

11.
ABSTRACT: In 1998 and 1999, third‐order watersheds in high mature forest (HMF) and low mature forest (LMF) classes were selected along gradients of watershed storage within each of two hydrogeomorphic regions in the Lake Superior Basin to evaluate threshold effects of storage on hydrologic regimes and watershed exports. Differences were detected between regions (North and South Shore) for particulates, nutrients, and pH, with all but silica values higher for South Shore streams (p < 0.05). Mature forest effects were detected for turbidity, nutrients, color, and alkalinity, with higher values in the LMF watersheds, that is, watersheds with less that 50 percent mature forest cover. Dissolved N, ammonium, N:P, organic carbon, and color increased, while suspended solids, turbidity, and dissolved P decreased as a function of storage. Few two‐way interactions were detected between region and mature forest or watershed storage, thus threshold based classification schemes could be used to extrapolate effects across regions. Both regional differences in water quality and those associated with watershed attributes were more common for third‐order streams in the western Lake Superior drainage basin as compared with second‐order streams examined in an earlier study. Use of ecoregions alone as a basis for setting regional water quality criteria would have led to misinterpretation of reference condition and assessment of impacts in the Northern Lakes and Forest Ecoregion.  相似文献   

12.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

13.
Merten, Eric C., Nathaniel A. Hemstad, Randall K. Kolka, Raymond M. Newman, Elon S. Verry, and Bruce Vondracek, 2010. Recovery of Sediment Characteristics in Moraine, Headwater Streams of Northern Minnesota After Forest Harvest. Journal of the American Water Resources Association (JAWRA) 46(4): 733-743. DOI: 10.1111/j.1752-1688.2010.00445.x Abstract: We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.  相似文献   

14.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

15.
ABSTRACT: An assessment of physical conditions in urban streams of the Puget Sound region, coupled with spatially explicit watershed characterizations, demonstrates the importance of spatial scale, drainage network connectivity, and longitudinal downstream trends when considering the effects of urbanization on streams. A rapid stream assessment technique and a multimetric index were used to describe the physical conditions of multiple reaches in four watersheds. Watersheds were characterized using geographic information system (GIS) derived landscape metrics that represent the magnitude of urbanization at three spatial scales and the connectivity of urban land. Physical conditions, as measured by the physical stream conditions index (PSCI), were best explained for the watersheds by two landscape metrics: quantity of intense and grassy urban land in the subwatershed and quantity of intense and grassy urban land within 500 m of the site (R2= 0.52, p > 0.0005). A multiple regression of PSCI with these metrics and an additional connectivity metric (proximity of a road crossing) provided the best model for the three urban watersheds (R2= 0.41, p > 0.0005). Analyses of longitudinal trends in PSCI within the three urban watersheds showed that conditions improved when a stream flowed through an intact riparian buffer with forest or wetland vegetation and without road crossings. Results demonstrate that information on spatial scale and patterns of urbanization is essential to understanding and successfully managing urban streams.  相似文献   

16.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

17.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

18.
The Bird Integrity Index (BII) presented here uses bird assemblage information to assess human impacts to 28 stream reaches in the Blue Mountains of eastern Oregon. Eighty-one candidate metrics were extracted from bird survey data for testing. The metrics represented aspects of bird taxonomic richness, tolerance or intolerance to human disturbance, dietary preferences, foraging techniques, and nesting strategies that were expected to be positively or negatively affected by human activities in the region. To evaluate the responsiveness of each metric, it was plotted against an index of reach and watershed disturbance that included attributes of land use/land cover, road density, riparian cover, mining impacts, and percent area in clearcut and partial-cut logging. Nine of the 81 candidate bird metrics remained after eliminating unresponsive and highly correlated metrics. Individual metric scores ranged from 0 to 10, and BII scores varied between 0 and 100. BII scores varied from 78.6 for a minimally disturbed, reference stream reach to 30.4 for the most highly disturbed stream reach. The BII responded clearly to varying riparian conditions and to the cumulative effects of disturbances, such as logging, grazing, and mining, which are common in the mountains of eastern Oregon. This BII for eastern Oregon was compared to an earlier BII developed for the agricultural and urban disturbance regime of the Willamette Valley in western Oregon. The BII presented here was sensitive enough to distinguish differences in condition among stream riparian zones with disturbances that were not as obvious or irreversible as those in the agricultural/urban conditions of western Oregon.  相似文献   

19.
The cumulative effects of forest management activities on water quality at a downstream point were monitored from 1972-1980 during development of a watershed for timber resources. Suspended sediment concentration and turbidity were measured at two hydrologic stations which bracketed a 10-km reach of the Middle Santiam River in the Western Cascades of Oregon as it flowed through an 8000-ha block of intensively managed forest land. Slope failures often accompany road building and harvesting in steep forested watersheds and pose the most serious threat to water quality. Although 180 km of road were constructed and 3400 ha of old-growth forests were harvested from slopes averaging over 60 percent, long-term changes in sediment yields remained undetectable during the period of measurement. The geologic characteristics of the basin and the road construction and maintenance techniques as prescribed by Oregon's forest practice regulations helped to minimize the occurrence of slope failures so that long-term changes in suspended sediment export rates did not occur. Throughout the nine-year measurement period, seven slope failures which added sediment directly to streams produced measurable short-term responses at the downstream sampling location, but these erosion events were too small and too infrequent to produce long-term changes in sediment yield from the watershed.  相似文献   

20.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号