首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ABSTRACT: Nonpoint source ground water contamination by nitrate nitrogen (NO3-N) leached from agricultural lands can be substantial and increase health risks to humans and animals. Accurate and rapid methods are needed to identify and map localities that have a high potential for contamination of shallow aquifers with NO3-N leached from agriculture. Evaluation of Nitrate Leaching and Economic Analysis Package (NLEAP) indices and input variables across an irrigated agricultural area on an alluvial aquifer in Colorado indicated that all leaching indices tested were more strongly correlated with aquifer NO3-N concentration than with aquifer N mass. Of the indices and variables tested, the NO3-N Leached (NL) index was the NLEAP index most strongly associated with groundwater NO3-N concentration (r2 values from 0.37 to 0.39). NO3-N concentration of the leachate was less well correlated with ground water NO3-N concentration (r2 values from 0.21 to 0.22). Stepwise regression analysis indicated that, although inorganic and organic/inorganic fertilizer scenarios had similar r2 values, the Feedlot Indicator (proximity) variable was significant over and above the NO3-N Leached index for the inorganic scenario. The analysis also showed that combination of either Movement Risk Index (MIRI) or NO3-N concentration of the leachate with the NO3-N Leached index leads to an improved regression, which provides insight into area-wide associations between agricultural activities and ground water NO3-N concentration.  相似文献   

2.
ABSTRACT: The Watershed Nutrient Transport and Transformation (NTT-Watershed) model is a physically based, energy-driven, multiple land use, distributed model that is capable of simulating water and nutrient transport in a watershed. The topographic features and subsurface properties of the watershed are refined into uniform, homogeneous square grids. The vertical discretization includes vegetation, overland flow, soil water redistribution and groundwater zones. The chemical submodel simulates the nitrogen dynamics in terrestrial and aquatic systems. Three chemical state variables are considered (NO3--, NH4+, and Org-N). The NTT-Watershed model was used to simulate the fate and transport of nitrogen in the Muddy Brook watershed in Connecticut. The model was shown to be capable of capturing the hydrologic and portions of the nitrogen dynamics in the watershed. Watershed planners could use this model in developing strategies of best management practices that could result in maximizing the reductions of nitrogen export from a watershed.  相似文献   

3.
ABSTRACT: A two-year study was conducted to assess the effect of hog manure on the losses of nitrogen and phosphorus in runoff and drainage from grain-corn (Zea mays L.) plots, and the importance of spring versus annual loads. Treatments consisted of mineral N-P-K fertilizer applied at rates of 152 kg N ha-1, 35 kg P ha-1, and 86 kg K ha-1; and hog (Sus scrofa domestica L.) manure applied preplant or post-emergence (six-to-eight leaf stage), at 152 kg N ha-1, 39 kg P ha-1, and 112 kg K ha-1. The plots were rototilled (7 cm depth) in spring to incorporate fertilizer and preplant hog manure, and fall chisel-plowed (15 cm depth) to incorporate chopped corn residues. They were arranged in a completely randomized plot design. Flow volumes and nutrient levels in runoff and drainage waters were monitored year round but occurred mainly during the snowmelt (March 25-April 9), and post.snowmelt (April 10-May 13) periods. Of the total amount of water lost during snowmelt, 90 percent was in runoff, while 92 percent occurred as drainage in the post-snowmelt period. Sixty-five percent of the total annual volume of water lost was lost during these two periods as runoff and drainage. Treatments did not affect the annual snowmelt or post-snowmelt N and P loads. Total annual loads averaged 8.0 kg TKN ha-1, 1.8 kg NH4-N ha-1, 43 kg NO3-N ha-1, 0.4 kg TP ha-1, and 0.15 kg PO4-P ha-1. Spring (snowmelt and ost-snowmelt) runoff and drainage loads averaged 2.9 kg TKN ha-1, 1.2 kg NH4-N ha-1, 18 kg NO3-N ha-1, 0.25 kg TP ha-1, and 0.04 kg PO4-P ha-1, which were 40 percent to 70 percent of the yearly nutrient loads. Therefore, the hog manure management systems examined were of no greater threat to the environment than mineral fertilizers. However, spring N and P losses do represent an important part of the annual nutrient loss budget, even with conservation practices.  相似文献   

4.
Two field experiments were carried out in the watersheds of two Ramsar wetland areas, Lakes Koronia and Volvi (area A) and Lakes Mikri and Megali Prespa (area B), to study the effect of application of N fertilizer on wheat yields, the quality of runoff water, and the quality of stream water. The treatments were a combination of two methods of fertilizer application (total amount in fall, and 2/3 in fall + 1/3 in spring) at three rates (0, 100, and 200 kg N/ha) with four replications. Concentrations of NH4 +, NO3 , NO2 , P, and Cl and pH were determined in all water samples. Runoff water quality was not influenced by fertilizer application in either area. Chemical parameters for water did not differ along the selected watercourses in area B, while in area A they were higher in the samples taken near Lake Koronia than in the samples taken upstream, indicating that the watercourses are polluted downstream by nonagricultural sources. The differences in wheat yields between the 100 and 200 kg N/ha application rates were not high. These results call for better fertilizer management in order to achieve better yields and to diminish the possibility to have negative effects to the environment.  相似文献   

5.
The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO3-N (Nitrate Nitrogen), PO4 (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO3-N concentrations. Results showed that PO4, NO3-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO4 and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO4 and TP decreased but NO3-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO3-N transport from the VFS, thus invalidating the purpose of the BMP.  相似文献   

6.
The riparian ecosystem management model (REMM) was field tested using five years (2005‐2009) of measured hydrologic and water quality data on a riparian buffer located in the Tar‐Pamlico River Basin, North Carolina. The buffer site received NO3‐N loading from an agricultural field that was fertilized with inorganic fertilizer. Field results showed the buffer reduced groundwater NO3‐N concentration moving to the stream over a five‐year period. REMM was calibrated hydrologically using daily field‐measured water table depths (WTDs), and with monthly NO3‐N concentrations in groundwater wells. Results showed simulated WTDs and NO3‐N concentrations in good agreement with measured values. The mean absolute error and Willmott's index of agreement for WTDs varied from 13‐45 cm and 0.72‐0.92, respectively, while the root mean square error and Willmott's index of agreement for NO3‐N concentrations ranged from 1.04‐5.92 mg/l and 0.1‐0.86, respectively, over the five‐year period. REMM predicted plant nitrogen (N) uptake and denitrification were within ranges reported in other riparian buffer field studies. The calibrated and validated REMM was used to simulate 33 years of buffer performance at the site. Results showed that on average the buffer reduced NO3‐N concentrations from 12 mg/l at the field edge to 0.7 mg/l at the stream edge over the simulation period, while the total N and NO3‐N load reductions from the field edge to the stream were 77 and 82%, respectively.  相似文献   

7.
With current agricultural practices the amounts of fertilizer N applied are frequently more than the amounts removed by the crop. Excessive N application may result in short-term accumulation of nitrate nitrogen (NO3-N) in soil, which can easily be leached from the root zone and into the ground water. A management practice suggested for conserving accumulated NO3-N is the application of oily food waste (FOG; fat + oil + greases) to agricultural soils. A two-year field study (1995-1996 and 1996-1997) was conducted at Elora Research Center (43 degrees 38' N, 80 degrees W; 346 m above mean sea level), University of Guelph, Ontario, Canada to determine the effect of FOG application in fall and spring on soil NO3-N contents and apparent N immobilization-mineralization of soil N in the 0- to 60-cm soil layer. The experiment was planned under a randomized complete block design with four replications. An unamended control and a reference treatment [winter wheat (Triticum aestivum L.) cover crop] were included in the experiment to compare the effects of fall and spring treatment of oily food waste on soil NO3-N contents and apparent N immobilization-mineralization. Oily food waste application at 10 Mg ha(-1) in the fall decreased soil NO3-N by immobilization and conserved 47 to 56 kg NO3-N ha(-1), which would otherwise be subject to leaching. Nitrogen immobilized due to FOG application in the fall was subsequently remineralized by the time of fertilizer N sidedress, whereas no net mineralization was observed in spring-amended plots at the same time.  相似文献   

8.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

9.
Drive point peizometers were installed at the stream–riparian interface in a small urbanizing southern Ontario catchment to measure the effect of buffers (presence/ absence) and land use (urban/agricultural) on the movement of NO? 3-N in shallow groundwater from the riparian area to the stream. Mean NO? 3-N concentrations ranged from 1.0 to 1.3 mg L?1 with maximum values of 9.4 mg L?1. Holding land use constant, there was no significant difference (p>0.05) in NO? 33-N concentration between buffered and unbuffered sites. Nitrate-N levels were not significantly different (p>0.05) as a function of land use. The lack of difference between sites as a function of buffer absence/presence and land use is probably due to the placement of some peizometers in low conductivity materials that limited groundwater flow from the riparian zone to the stream. Subsurface factors controlling the hydraulic gradient are important in defining buffer effectiveness and buffer zones should not be used indiscrim inately as a management tool in urban and agricultural landscapes to control nitrate-N loading in shallow groundwater to streams without detailed knowledge of the hydrogeo logic environment.  相似文献   

10.
ABSTRACT: An 18-month field experiment was conducted to evaluate the effectiveness of grass filter strips in removing sediment and various nitrogen species from runoff. Runoff was collected from six 3.7 m wide experimental plots with 24.7 m long runoff source areas. Two plots had 8.5 m filters, two plots had 4.3 m filters, and two plots had no filters. Runoff was analyzed for total suspended solids (TSS), total Kjeldahl nitrogen (TKN),. filtered TKN (FTKN), NH4+-N, and NO3-N. The Mann-Kendall nonparametric test for trend (changes in filter effectiveness over time) indicated that there were no trends in the yields and concentrations of TSS, NO3--N, NH4-N, TKN, and FTKN for the 8.5 m filter over time. For the shorter 4.3 m filters, there were significant upward trends in TKN yield and downward trends in TSS, NH4-N, and FTKN concentrations, indicating that trapping efficiency may have started changing with time. The Kruskal-Wallis test indicated that the 8.5 m filters reduced median yields and concentrations of TSS and all N species, but the 4.3 m filters only reduced the median yields and concentrations of TSS, NH4+-N, TKN, and the median concentration of FTKN. The 8.5 and 4.3 m filters reduced contaminate yields and concentrations from 42 to 90 percent and from 20 to 83 percent, respectively.  相似文献   

11.
ABSTRACT: Application of fertilizer can degrade quality of runoff, particularly during the first post-application, runoff-producing storm. This experiment assessed and compared runoff quality impacts of organic and inorganic fertilizer application for a single simulated storm occurring seven days following application. The organic fertilizers used were poultry (Gallus gallus domesticus) litter, poultry manure, and swine (Sus scrofa domesticus) manure. All fertilizers were applied at an application rate of 217.6 kg N/ha. Simulated rainfall was applied at 50 mm/h for an average duration of 0.8 h. Runoff samples were collected, composited, and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliforms (FC), and fecal streptococci (FS). Application of the fertilizers did not alter the hydrologic characteristics of the receiving plots relative to the control plots. Concentrations of fertilizer constituents were almost always greater from treated than from control plots and were usually much greater. Flow-weighted mean concentrations of NH3-N, PO4-P, and TP were highest for the inorganic fertilizer treatment (42.0, 26.6, and 27.9 mg/L, respectively). Runoff COD and TSS concentrations were greatest for the poultry litter treatment. Concentrations of FC and FS were greater for fertilized than for control plots with no differences among fertilized plots, but FC concentrations for all treatments were in excess of Arkansas' primary and secondary contact standards. Mass losses of fertilizer constituents were low (≤ 3 kg/ha) and were small proportions (≤ 3 percent) of amounts applied.  相似文献   

12.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

13.
The leaching of salt and mineral elements from three composts prepared with residual vegetable crop biomass (melon, pepper or zucchini) was studied using methacrylate columns and distilled water. The benefits of the leached composts to be used for ornamental potted plant production were also analysed. After leaching 5 container capacities of effluent, both the electrical conductivity and the concentration of soluble mineral elements in compost leachates decreased substantially and remained close to the target levels. Composts reacted differently to leaching due to differences in the raw waste sources and the composting process and hence, in their physical and chemical characteristics. At the end of the experiment, after pouring 8 container capacities of water, the leaching efficiency of the salts was 96%, 93% and 87% for melon, pepper and zucchini-based composts, respectively. Mineral elements differed in their ability to be removed from the composts; N (NH4+ and NO3?), K+, Na+, Cl?, and SO42? were leached readily, whereas H2PO4?, Ca2+, and Mg2+ were removed hardly. Leached composts showed a range of physico-chemical and chemical characteristics suitable for use as growing media constituents. Potted Calendula and Calceolaria plants grew in the substrates prepared with the leached composts better than in those made with the non-leached ones. Finally, special emphasis must be paid to the management of the effluents produced under commercial conditions to avoid environmental pollution.  相似文献   

14.
ABSTRACT: The persistence of water quality problems has directed attention towards the reduction of agricultural nonpoint sources of phosphorus (P) and nitrogen (N). We assessed the practical impact of three management scenarios to reduce P and N losses from a mixed land use watershed in central Pennsylvania, USA. Using Scenario 1 (an agronomic soil P threshold of 100 mg Mehlich‐3 P kg‐1, above which no crop response is expected), 81 percent of our watershed would receive no P as fertilizer or manure. Under Scenario 2 (an environmental soil P threshold of 195 mg Mehlich‐3 P kg‐1, above which the loss of P in surface runoff and subsurface drainage increases greatly), restricts future P inputs in only 51 percent of the watershed. Finally, using scenario 3 (P and N indices that account for likely source and transport risks), 25 percent of the watershed was at high risk or greater of P loss, while 60 percent of the watershed was classified as of high risk of nitrate (NO3) leaching. Areas at risk of P loss were near the stream channel, while areas at risk of NO3 leaching were near the boundaries of the watershed, where freely draining soils and high manure and fertilizer N applications coincide. Remedial measures to minimize P export should focus on critical source areas, while remedial measures to reduce N losses should be source based, concentrating on more efficient use of N by crops.  相似文献   

15.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

16.
Nonpoint source pollution is the leading cause of the U.S.’s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution.  相似文献   

17.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   

18.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

19.
Nutrient export from the agricultural Midwest threatens the Gulf of Mexico and new conservation practices are needed to reduce the loss of nutrient from subsurface tile drainage systems. Oxbows are natural waterbodies formed when a river cuts off a meander loop and water quality benefits of reconstructed oxbows are being increasingly recognized. In this study, we monitored four reconstructed oxbow sites (two tile-fed, two non-tile) over a 2-year period in north-central Iowa and assessed their capacity for NO3-N and dissolved reactive phosphorus (DRP) reductions. Water flow and quality monitoring of tiles, shallow groundwater, oxbow and receiving streams documented that the oxbows were dominated by tile drainage inputs. NO3-N concentrations were highest in the drainage tiles flowing into the tile-fed oxbows (mean 8–10 mg/L) and much lower in floodplain groundwater (<1–2 mg/L). Annual NO3-N loads into the tile-fed oxbows were substantially larger than input loads into the non-tiled oxbows. For the two tile-fed oxbows, the 2-year NO3-N retention efficiencies were very similar (0.76–0.77) and on a monthly basis, greater retention efficiencies were measured in summer and fall. DRP concentrations and loads into the tile-fed oxbows were too low to allow for meaningful estimates of retention. Reconstructing oxbows to receive tile drainage water should be considered a sustainable conservation practice for tile drainage treatment in agricultural areas.  相似文献   

20.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号