首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The US Sustainable Remediation Forum (SURF) created a compilation of metrics (Metrics Toolbox) in response to a need for a broad set of metrics that could be used to assess and monitor the effectiveness of remedies in achieving sustainability goals. Metrics are the key impacts, outcomes, or burdens that are to be assessed or balanced to determine the influences and impacts of a remedial action. Metrics can reflect any of the three aspects of sustainability (i.e., environmental, social, or economic) or a combination of these aspects. Regardless, metrics represent the most critical sustainable outcomes from the perspective of the key stakeholders. The Metrics Toolbox is hosted online at www.sustainableremediation.org/library/guidance‐tools‐and‐other‐resources . By selecting metrics from the Metrics Toolbox as a starting point and considering a potentially wider suite of metrics in remedial program decisions, appropriate assessments can be made. Qualitative and quantitative metrics are tabulated for each remedial phase: remedial investigation, remedy selection, remedial design, remedial construction, operation and maintenance, and closure. Attributes for each metric are described so that remediation practitioners and key stakeholders can view the universe of metrics available and select the most relevant, site‐specific metrics for a particular site. For this reason, SURF recommends that remediation practitioners consider the metrics compiled in the Metrics Toolbox as a companion to the sustainable remediation framework published elsewhere in this journal and other sustainability evaluations. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Sustainable remediation concepts have evolved during the decade 2007–2017. From the establishment of the first Sustainable Remediation forum (SURF) in 2007, to publication of ASTM and ISO standards by 2017. Guidance has been developed around the world to reflect local regulatory systems, and much has been learned in applying sustainability assessment to contaminated site management projects. In the best examples, significant improvements in project sustainability have been delivered, including concurrent reduction of the environmental footprint of the remediation program, improved social performance, and cost savings and/or value creation. The initial advocates for the concept of sustainable remediation were quickly supported by early adopters who saw its potential to improve the remediation industry's performance, but they also had to overcome some inertia and scepticism from other parties. During the debates and discussions that occurred at numerous international conferences and SURF workshops around the world, various opinions were formed and positions stated. Some proved to be correct, others not so. With the recent publication of ISO Standard 18504 and the benefit of a decade's‐worth of hindsight on sustainable remediation programs implementation and project delivery, this paper summarizes a number of myths and misunderstandings that have been stated regarding sustainable remediation and seeks to debunk them. Sustainable remediation assessment shows us how to manage unacceptable risks to human health and the environment in the best, that is to say the most sustainable, way. It provides the contaminated land management industry a framework to incorporate sustainable development principles into remediation projects and deliver significant value for affected parties and society more broadly. In dispelling some myths about sustainable remediation set out in this paper, it is hoped that consistent application of ISO18504/SuRF‐UK (or equivalently robust guidance) will facilitate even wider use of sustainable remediation around the world.  相似文献   

4.
The US Sustainable Remediation Forum (SURF) proposes a nine‐step process for conducting and documenting a footprint analysis and life‐cycle assessment (LCA) for remediation projects. This guidance is designed to assist remediation practitioners in evaluating the impacts resulting from potential remediation activities so that preventable impacts can be mitigated. Each of the nine steps is flexible and scalable to a full range of remediation projects and to the tools used by remediation practitioners for quantifying environmental metrics. Two fictional case studies are presented to demonstrate how the guidance can be implemented for a range of evaluations and tools. Case‐study findings show that greater insight into a study is achieved when the nine steps are followed and additional opportunities are provided to minimize remediation project footprints and create improved sustainable remediation solutions. This guidance promotes a consistent and repeatable process in which all pertinent information is provided in a transparent manner to allow stakeholders to comprehend the intricacies and tradeoffs inherent in a footprint analysis or LCA. For these reasons, SURF recommends that this guidance be used when a footprint analysis or LCA is completed for a remediation project. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
In the past decade, management of historically contaminated land has largely been based on prevention of unacceptable risks to human health and the environment, to ensure a site is “fit for use.” More recently, interest has been shown in including sustainability as a decision‐making criterion. Sustainability concerns include the environmental, social, and economic consequences of risk management activities themselves, and also the opportunities for wider benefit beyond achievement of risk‐reduction goals alone. In the United Kingdom, this interest has led to the formation of a multistakeholder initiative, the UK Sustainable Remediation Forum (SuRF‐UK). This article presents a framework for assessing “sustainable remediation”; describes how it links with the relevant regulatory guidance; reviews the factors considered in sustainability; and looks at the appraisal tools that have been applied to evaluate the wider benefits and impacts of land remediation. The article also describes how the framework relates to recent international developments, including emerging European Union legislation and policy. A large part of this debate has taken place in the “grey” literature, which we review. It is proposed that a practical approach to integrating sustainability within risk‐based contaminated land management offers the possibility of a substantial step forward for the remediation industry, and a new opportunity for international consensus. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
The U.S. Department of Energy is conducting a project to accelerate remediation through the use of monitored natural attenuation and enhanced attenuation for chlorinated ethenes in soils and groundwater. Better monitoring practices, improved scientific understanding, and an advanced regulatory framework are being sought through a team effort that engages technology developers from academia, private industry, and government laboratories; site cleanup managers; stakeholders; and federal and state regulators. The team works collaboratively toward the common goals of reducing risk, accelerating cleanup, reducing cost, and minimizing environmental disruption. Cutting‐edge scientific advances are being combined with experience and sound environmental engineering in a broadly integrated and comprehensive approach that exemplifies socalled “third‐generation R&D.” The project is potentially a model for other cleanup activities. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   

8.
This article presents a methodology to calculate the social cost of sustainability metrics with environmental footprint evaluation tools. Measuring the impacts of a remediation project on society is challenging because the methods by which these impacts can be measured have not been established. To perform a complete sustainability assessment of a project's life cycle, costs borne by society in terms of environmental, economic, and community impacts must be evaluated. Two knowledge gaps have been identified among the sustainability assessments currently being performed during a remediation project's life cycle: (1) lack of methodologies available to evaluate impacts on the socioeconomic aspects of remediation and (2) lack of sustainability assessments conducted during the site characterization stage. Sustainability assessments were conducted on two case studies using the methodology proposed in this article: one during the site characterization stage and the other during remedial action. The results of this study demonstrated that costs borne by society from a remediation project are significant and metric specific. This study also highlighted the benefits of conducting a sustainability assessment at the site characterization stage using environmental footprint analysis tools, cost benefit analysis, and an evaluation of costs borne by society. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Sustainable remediation guidance, frameworks, and case studies have been published at an international level illustrating established sustainability assessment methodologies and successful implementation. Though the terminology and indicators evaluated may differ, one common theme among international organizations and regulatory bodies is more comprehensive and transparent methods are needed to evaluate the social sphere of sustainable remediation. Based on a literature review and stakeholder input, this paper focused on three main areas: (1) status quo of how the social element of sustainable remediation is assessed among various countries and organizations; (2) methodologies to quantitatively and qualitatively evaluate societal impacts; and (3) findings from this research, including challenges, obstacles, and a path forward. In conclusion, several existing social impact assessment techniques are readily available for use by the remediation community, including rating and scoring system evaluations, enhanced cost benefit analysis, surveys/interviews, social network analysis, and multicriteria decision analysis. In addition, a list of 10 main social indicator categories were developed: health and safety, economic stimulation, stakeholder collaboration, benefits community at large, alleviate undesirable community impacts, equality issues, value of ecosystem services and natural resources, risk‐based land management and remedial solutions, regional and global societal impacts, and contributions to other policies. Evaluation of the social element of remedial activities is not without challenges and knowledge gaps. Identification of obstacles and gaps during the project planning process is essential to defining sustainability objectives and choosing the appropriate tool and methodology to conduct an assessment. Challenges identified include meaningful stakeholder engagement, risk perception of stakeholders, and trade‐offs among the various triple bottom line dimensions. ©2015 Wiley Periodicals, Inc.  相似文献   

10.
Almost everyone who has been involved in a site remediation project has seen schedules slip and costs escalate due to political pressure from the public or the press. While focusing on remediation technologies and containment techniques to control costs, many organizations have neglected a major cost driver—public opinion. This article examines community relations from the perspective of an organization trying to control costs during a site remediation project. It details the strong correlation between the cost of a site cleanup and the level of public dissatisfaction and provides an organization with specific strategies on how to use proven communications techniques to lower costs. Examination of several case studies is provided, including a study involving a site in which community representatives actively worked to reduce project costs. It is clear that any responsible cleanup must be protective of public health and the environment. But it is becoming increasingly apparent that wise allocation of available resources has a profound effect on the program's ability to ensure public and environmental safety. In many cases, it has been proven that some costly cleanups—for example, involving excavation—sometimes actually increase risk by creating an exposure pathway where none existed before. In turn, such cleanups waste resources that are needed elsewhere. The challenge in dealing with this complicated issue is to help stakeholders understand the true ramifications of the choices that are faced at each site. If these stakeholders feel uninformed, powerless, or excluded from the process, it is likely that they will be unable to enter a productive discussion. The community relations programs outlined in documents such as a Superfund guidance can be helpful in familiarizing the community with site-related issues and with gathering public input. These activities act as a baseline for the programs discussed in this article. However, existing programs are not focused on providing a strategic advantage in reaching cleanup solutions and balancing health and environmental considerations with economic considerations.  相似文献   

11.
Nanoscale zero‐valent iron (nZVI) is the most commonly used nanoremediation material. While there has been a reasonable level of application of nZVI technologies for in situ remediation in the United States, its utilization across Europe has been much more limited. There has been significant uncertainty about the balance between deployment risks and benefits for nanoparticles (NPs), which has affected the regulatory position in several countries. Some member states of the European Union (EU) take a strong precautionary view of the risks from the deployment of NPs into the subsurface, preventing the adoption of the technology. This article provides a risk–benefit assessment for nZVI based on published information and describes the steps that will be taken by a major European research project (NanoRem), as part of its work to provide a basis for better informed decision making in European environmental restoration markets. A key part of this process is dialogue between practitioners and researchers. NanoRem therefore has an active process of communication with different stakeholder networks (regulators, service providers, and site owners). NanoRem hopes to stimulate a consensus on appropriate use of nanoremediation and thereby stimulate effective technology transfer to the European remediation market. ©2015 The Authors  相似文献   

12.
13.
This perspective article was prepared by members of the Sustainable Remediation Forum (SURF), a professional nonprofit organization seeking to advance the state of sustainable remediation within the broader context of sustainable site reuse. SURF recognizes that remediation and site reuse, including redevelopment activities, are intrinsically linked—even when remediation is subordinate to or sometimes a precursor of reuse. Although the end of the remediation life cycle has traditionally served as the beginning of the site's next life cycle, a disconnect between these two processes remains. SURF recommends a holistic approach that brings together remediation and reuse on a collaborative parallel path and seeks to achieve whole‐system sustainability benefits. This article explores the value of integrating remediation into the reuse process to fully exploit synergies and minimize the costs and environmental impacts associated with bringing land back into beneficial use. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Many individual scientific and technical disciplines contribute to the multidisciplinary field of remediation science and practice. Because of the relative youth of this enterprise, disciplinary interests sometimes compete and conflict with the primary goal of achieving protective, cost‐effective, efficient projects. Convergence of viewpoints toward a more mature, common vision is needed. In addition, cleanup programs are changing under the influence of Brownfields initiatives and the needs of environmental insurance underwriters. Investigations and cleanups increasingly need to be affordable, yet transparent and defensible. Disciplinary goals and terminology need to better reflect real‐world site conditions while being more supportive of project needs. Yet, technical considerations alone will not ensure project success; better integration of human factors into project management is also required. The Triad approach is well placed to catalyze maturation of the remediation field because it emphasizes (1) a central theme of managing decision uncertainty; (2) unambiguous technical communications; (3) shortened project life‐cycles and multidisciplinary interactions that rapidly build professional expertise and provide feedback to test and perfect programmatic and field practices; and (4) concepts from “softer” sciences (such as economics, cognitive psychology, and decision theory) to capture important human factors. Triad pushes the cleanup industry toward an integrated, practical, second‐generation paradigm that can successfully manage the complexities of today's cleanup projects. © 2004 Wiley Periodicals, Inc.  相似文献   

15.
Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Domestic and international cooperation in the field of contaminated‐site management has increased dramatically in the past decade. The expected benefits of this cooperation include the reduction of duplication in remediation efforts, the coordination of contaminated‐site research, improved synergy between various stakeholders, enhanced policy development, and better information dissemination and technology transfer. This article identifies and briefly discusses key domestic and international collaborations, partnerships, and networks relating to contaminated‐site management and remediation. Also provided is information on how the forums can be accessed. Common themes identified across the forums discussed in this article include (1) the development and demonstration of innovative technologies, (2) the use of risk assessment, (3) the use of toxicology, bioavailability, and ecotoxicity testing, and (4) the increasing need to find holistic approaches for managing contaminated sites, such as guaranteed remediation programs and transfer of environment liability, and the need for understanding implications of remediation financing mechanisms. © 2001 John Wiley & Sons, Inc.  相似文献   

17.
In many locations across the world, land contamination poses a serious threat to human health and the wider environment. For instance, a report published on April 17, 2014, revealed that China now has 16.1 percent of its land contaminated by various organic and inorganic contaminants, posing a range of challenges from human health risk to food security. The innovation and adoption of suitable remediation technologies is critical for solving land contamination issues. However, little is known about the pattern of remediation technology adoption, as well as its determining factors. This study uses a questionnaire survey in the United States, United Kingdom, and China to examine the spatial variation of remediation technology adoption. It further explores the temporal trend of remediation technology adoption using secondary data from the U.S. Superfund program. The study identified significant differences in remediation technology adoption among these countries, which are attributed to the different environmental, social, economic, and regulatory contexts. It is argued that the full implications of remediation technology adoption to sustainable development should be further studied, and policy instruments should be designed accordingly to promote those remediation technologies that align the best with long‐term sustainability. Technology developers may also use these implications to adjust their research and development priorities. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
An efficient program for assessing groundwater extraction system capture zones has been developed that can be run on any digitized potentiometric surface. The program was developed in response to the need to simulate particle capture by multiple remediation system elements (i.e., extraction wells, hydraulic barrier, etc.) at a hydrogeologically complex site in California (the Site). The method uses MODPATH software but does not otherwise require a groundwater model. The program called “CapZone FileBuilder” (Capture Zone File Builder) Version 1.0 was created to import digitized potentiometric surfaces and use them to create MODFLOW output files (using native USGS MODFLOW‐2005 codes). CapZone FileBuilder was created using the C# programming language with Visual Studio 2013 as the integrated development environment. The model was applied to a site that has a regulatory requirement for capture analysis as part of an annual remedy‐effectiveness evaluation for groundwater contamination. Previously, capture analysis was highly labor intensive and time consuming, performed using manual flow net analysis or calibration of highly discretized MODFLOW groundwater models. CapZone FileBuilder is now used to perform the capture analysis for this site and is universally applicable to any site with a groundwater potentiometric map. ©2017 Wiley Periodicals, Inc.  相似文献   

19.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

20.
Strategies for remediation of drilling mud wastes at a typical deep sour gas well site in the foothills of Alberta were assessed in terms of financial and social costs and benefits, in alignment with established sustainable remediation and decision analysis principles. Managers of contaminated sites containing historical drilling wastes are challenged with managing liability through several regulatory changes over time. Excavation and disposal of the contaminated soil from the site was the only means of securing regulatory release, with the nearest landfill located 150 km away. A perception exists that in many cases excavation and disposal inflicts unnecessary levels of site intrusiveness and public disturbance when other options achieving a similar risk end point may do so for lower social cost. The study tested this hypothesis to ascertain whether the currently accepted solution is the best option when the wider costs and benefits to society and the environment are included. Eight remedial strategies were assessed using cost–benefit analysis, including using environmental economics techniques to quantify social and environmental impacts. The economic model showed that methods such as capping in‐place or engineered encapsulation were superior to full excavation and disposal from financial and sustainability perspectives. Quantified external costs and benefits such as road damage, greenhouse gas emissions, public nuisance and safety, and community amenity value were influential in identifying superior options. It was demonstrated that $0.2 million of societal costs could be avoided by choosing capping over landfill disposal. This represents substantial implications when viewed in the context of this and other operators’ portfolios of hundreds of abandoned wells in the area. ©2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号