首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
ABSTRACT: Mandatory water conservation in the form of restrictions on outdoor watering, car washing, and recreation was implemented in the City of Austin, Texas, during the summers of 1984 and 1985. Three different stages of restrictions were implemented limiting the number of watering hours per day, as well as a restriction that allowed lawn watering once every five days according to the last digit of the street address, Intervention analysis using a transfer function-noise model of daily water use is applied to assess the impact of the restrictions. Compared to a peak water use rate of about 170 MGD, it is shown that mandatory restrictions in 1984 reduced water use by an average of 13.5 MGD, while similar restrictions during the summer of 1985 reduced usage by an average of 5.5 MGD. Lawn watering restrictions on a five-day cycle produced a corresponding five-day cycle in water use of more than 10 MGD in amplitude in 1985. An alternative lawn watering scheme that eliminates this cycle is prescribed.  相似文献   

2.
ABSTRACT: During the drought year of 1977, unusually low river flows during the summer caused the City of Fort Collins, Colorado, to institute lawn watering restrictions for six weeks as a conservation measure. Water use during the restriction period decreased 41 percent below the previous year. The effectiveness of the restrictions, however, has been unclear because abnormally wet weather also appeared to reduce evapotranspiration rates during the period the restrictions were in effect. The statistical analysis indicates that the reduction in water use due to lawn watering restrictions was 603 acre-feet and that abnormal weather reduced use by an additional 659 acre-feet during the same period. During a period of normal evapotranspiration rates, such restrictions would be expected to reduce Fort Collins municipal water usage by 19.7 percent.  相似文献   

3.
ABSTRACT: Drought conditions in the summer of 2002 prompted several cities along Colorado's Front Range to enact restrictions on outdoor water use, focusing primarily on limiting the frequency of lawn watering. The different approaches utilized by eight water providers were tracked to determine the level of water savings achieved, measured as a comparison of 2002 usage to 2000 to 2001 average usage, and also based on a statistical estimate of 2002 “expected use” that accounts for the impact of drought conditions on demand. Mandatory restrictions were shown to be an effective tool for drought coping. During periods of mandatory restrictions, savings measured in expected use per capita ranged from 18 to 56 percent, compared to just 4 to 12 percent savings during periods of voluntary restrictions. As anticipated, providers with the most stringent restrictions achieved the greatest savings.  相似文献   

4.
Abstract: Many municipalities have implemented demand management of outdoor water use. Measures such as restrictions on lawn watering and promotion of xeriscaping are effective in reducing water demand during summer months, especially during dry spells. However, little research examines a key factor shaping the success of these programs: residents’ perceptions of and satisfaction with such conservation measures. This article describes an urban outdoor water conservation program in Guelph, Ontario, assesses that program from the perspective of residents, and explores socio‐economic, attitudinal and other factors associated with residents’ assessment of the program. A survey of Guelph residents revealed broad support for the program, which includes restrictions on various outdoor water uses and, under certain circumstances, a ban on lawn watering. However, there was much uncertainty among residents about the effectiveness of the program in reducing water use and the effectiveness of program enforcement. Key factors influencing residents’ assessment of the program were neighborhood, gender and environmental attitude. Implications for the design and implementation of outdoor water conservation programs are discussed, including the importance of better communication of information on program effectiveness and enforcement.  相似文献   

5.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

6.
ABSTRACT: In order to determine design capacities for various components of municipal and rural domestic water supply systems, engineers must estimate water requirements for an entire year (water rights), for the peak season (reservoir storage), for the peak day (pump or treatment plant size), and for peak hour (pipeline sizes). Historically, per capita water use rates have varied greatly between systems, particularly in semiarid regions where outdoor demands are large. The resulting uncertainty in design capacity estimates can cause either inadequate capacities or premature investment. In order to minimize that uncertainty multiple regression and frequency analyses were made of the various water demand parameters mentioned above for 14 systems in Utah and Colorado. Specifically, demand functions are reported for average month, peak month, and peak day. Peak hour demands were also studied but are reported in a different paper. The independent variables which were significant for monthly and daily demands were price of water and an outdoor use index which includes the effect of variation in landscaped area and accounts for use of supplementary ditch or pressure irrigation systems. The demand functions were developed with data from systems varying in size from very small low density rural systems to Salt Lake City's water system. The correlation coefficients (R2) vary from 0.80 to 0.95.  相似文献   

7.
ABSTRACT: The water reductions resulting from Contra Costa Water District's 1989 residential audit program are measured using a multivariate regression model. The model explains metered residential water use as a function of both conservation and other household variables. The principle conclusions drawn are that (1) installation of low-flow showerheads reduced indoor water use by 9.7 percent or 7.8 gallons per capita day, (2) the outdoor segment of the audit reduced irrigation needs by 18.7 percent, and (3) irrigation timers are being used inefficiently.  相似文献   

8.
ABSTRACT: A cascade model for forecasting municipal water use one week or one month ahead, conditioned on rainfall estimates, is presented and evaluated. The model comprises four components: long term trend, seasonal cycle, autocorrelation and correlation with rainfall. The increased forecast accuracy obtained by the addition of each component is evaluated. The City of Deerfield Beach, Florida, is used as the application example with the calibration period from 1976–1980 and the forecast period the drought year of 1981. Forecast accuracy is measured by the average absolute relative error (AARE, the average absolute value of the difference between actual and forecasted use, divided by the actual use). A benchmark forecast is calculated by assuming that water use for a given week or month in 1981 is the same as the average for the corresponding period from 1976 to 1980. This method produces an AARE of 14.6 percent for one step ahead forecasts of monthly data and 15.8 percent for weekly data. A cascade model using trend, seasonality and autocorrelation produces forecasts with AARE of about 12 percent for both monthly and weekly data while adding a linear relationship of water use and rainfall reduces the AARE to 8 percent in both cases if it is assumed that rainfall is known during the forecast period. Simple rainfall predictions do not increase the forecast accuracy for water use so the major utility of relating water use and rainfall lies in forecasting various possible water use sequences conditioned on sequences of historical rainfall data.  相似文献   

9.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

10.
ABSTRACT: A study was undertaken to see if benefits from water supply could be increased by utilizing price-usage information in reservoir design studies. Three pricing policies were examined. The first policy assumed no price-use relationship, and quantity demanded was based on existing community usage with a low water rate. The price of water was set to recover system costs. A price-use relationship was assumed in the second policy and the water rate was constant. The price of water was determined from the associated system which provided maximum expected net benefits. The third policy assumed the price-use relationship and the price charged for water during each billing period was a non-linear function of storage which increased as the amount of water in storage at the beginning of the period decreased. It was found that the use of the conservation pricing policies substantially reduced storage requirements while providing demonstrable net benefits to the community and a large average supply. The conservation pricing policies substantially lowered the average price paid for water. The effect of uncertainty in consumer response to changes in price was studied by using a probabilistic price-use relationship. This uncertainty did not significantly reduce the effectiveness of the conservation policy. It was concluded that demand management by the use of a proper pricing policy could significantly increase net water supply benefits to a community.  相似文献   

11.
ABSTRACT: Increasing costs and competition for water have resulted in pressure to manage urban water demand through conservation programs. Metering, pricing, devices, restrictions, building code changes, and horticultural practices have all been effective in reducing average residential water use. Some conservation means are specifically aimed at reducing peak demands but these usually reduce average usage as well. Combined programs of conservation can be expected to reduce urban demand by as much as 25–30 percent over the long term. Restrictions can reduce water usage on the short term even further. The success of conservation programs is as dependent on the effectiveness of public education and information dissemination as on the conservation practices themselves.  相似文献   

12.
ABSTRACT: Relevant literature was reviewed from which a model of residential water conservation was developed. Four residential conservation program interventions were posited: 1) public education, 2) pricing variables, 3) water use restrictions, and 4) building code requirements. Four exogenous variables affecting residential water use were also posited: 1) temperature, 2) rainfall, 3) household income, and 4) household size. The impacts of these eight variables on residential per capita daily use were assessed by cross sectional and time series analysis. Study results generally supported the porposed model, with less consistent support obtained for pricing variables and conservation beliefs. The paper concludes with the hypothesis that an inclining block rate structure coupled with an informational program designed to inform consumers of their consumption under each block will have a synergistic impact.  相似文献   

13.
ABSTRACT: Seasonal precipitation predictions were utilized in a water management decision with major economic, societal, and political ramifications. A summer (1984) drought had created a situation calling for possible fall season use of state waters from two major multipurpose reservoirs with an ensuing effect on water price negotiations. Choices facing management and use of water from the reservoirs were to invoke expensive water restrictions with a 33 percent chance of being right, do nothing (66 percent chance of wrong outcome), or use the precipitation predictors (for above normal fall rain) having a 50 percent chance of error. Hydrologists chose to follow the precipitation predictions, which proved to be accurate for the fall of 1984, helping to reveal the long-term value of using well understood climate predictions in water management.  相似文献   

14.
To demonstrate the benefits of water conservation at the household level in regional Victoria in Australia, a family house “Sharland Oasis” was designed and built according to an ecologically sustainable design for improved water and energy efficiency. This study has demonstrated that the combined use of alternative water supplies together with water efficient appliances can save up to 77% of total potable water use compared to the average 1990s household water use in the same region considering the location and differing in water use approach. The use of rainwater inside the home alone saved up to 40% of potable water use. In addition to the water savings, there is a significant wastewater discharge saving achieved through the use of water conservation strategies and greywater reuse. A community survey undertaken in regional Victoria revealed that community receptivity for reusing greywater is highest for uses, such as watering gardens and flushing toilets; but it progressively decreased with increasing personal contact with greywater. Positive perception of greywater reuse needs to be encouraged through programs targeted at developing resources, skills and motivation for new water reuse practices and technologies, across a diverse range of social groups.  相似文献   

15.
ABSTRACT: A study was undertaken to determine the effect of water intensive appliances or activities on household water consumption. Activities included in the study were use of the washing machine, dishwasher, swimming pool, and lawn watering. In the majority of cases these activities increased per capita consumption and were statistically significant. Households included in the study were not familiar with water saving devices available in the retail market. Even if tehse appliances were purchased, private economic benefits to the household would be low due to the inexpensive water charges levied. However, aggregate community benefits could be large if new well drilling cost or increase in storage facilities could be avoided. In order to avoid these increased costs, regulation or subsidy programs may be the most efficient policy alternatives available to the communities. Subsidies and regulation could potentially decrease water use and offer alternatives to increasing the water supply.  相似文献   

16.
ABSTRACT: Prediction of future water demands depends on the degree to which conservation effects can be anticipated. A model developed for the Corps of Engineers shows that choosing a numerical conservation target to be achieved is more meaningful and yields more predictable results than price or price elasticity manipulations. The method developed and then applied to the Kaneohe Bay region of Oahu considers the following determinants of demand: geographic distribution of the users, indoor and outdoor requirements, time - by year and month of the year, precipitation, historical unit usage rates, gross and irrigable acreage of land uses, price for water, elasticity of demand with respect to price, source of the water supply (local private supplies vs. agency supplies), and the percentage conservation savings anticipated in each future period in indoor and outdoor uses of water in each of 40 possible land uses. While developed for use in Hawaii, the model is applicable generally.  相似文献   

17.
ABSTRACT: A single-family residence in Tucson, Arizona, was retrofitted with water-conserving fixtures, rainwater harvesting, and graywater reuse systems. During a four-year study, efficient use of water was shown to significantly decrease demand for domestic water at the house without reducing the residents' quality of life. The use of municipal water was reduced by 66 percent to 148 gallons per day (gpd) and total household use was reduced by 27 percent to 245 gpd. Graywater reuse averaged approximately 77 gpd or 32 percent of the total household water use. Evaporative cooling required about 15 gpd. Water use for toilet flushing was only 9 gallons per capita per day (gpcd) or 14 percent of interior water use.  相似文献   

18.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

19.
A multivariate time series model is formulated to study monthly variations in municipal water demand. The left hand side variable in the multivariate regression model is municipal water demand (gallons per connection per day) and the right hand side contains (explanatory) variables which include price (constant dollars), average temperature, total precipitation, and percentage of daylight hours. The application of the regression model to Salt Lake City Water Department data produced a high multiple correlation coefficient and F-statistic. The regression coefficients for the right hand side variables all have the appropriate sign. In an ex post forecast, the model accurately predicts monthly variations in municipal water demand. The proposed monthly multivariate model is not only found useful for forecasting water demand, but also useful for predicting and studying the impact of nonstructural management decisions such as the effect of price changes, peak load pricing methods, and other water conservation programs.  相似文献   

20.
Abstract: Landscape water conservation is an important issue for municipalities throughout the Western United States, and especially in Utah as rapid growth strains existing water supplies. We conducted interdisciplinary research in Layton, Utah, that aimed at understanding patterns of landscape water use among households and businesses. The research project involved three basic tasks. First, a landscape “water budget” was developed by producing a calibrated and classified mosaic of landscape type and area from airborne multispectral digital imagery, integrating this information with Layton City parcel boundary data to determine landscape vegetated areas per lot, and estimating irrigation needs derived from reference evapotranspiration (ETo) obtained using weather data for the Salt Lake City metropolitan region. Second, utilizing Layton water billing data, water use for each household and business was identified and categorized as “conserving,”“acceptable” or “wasteful” by determining how much the water applied varied from actual landscape plant need. Third, surveys were administered to a random stratified sample of households and businesses in the study area to investigate various factors that were hypothesized to be predictive of wasteful watering practices. This paper primarily focuses on analysis of the household and business survey data, which explores factors affecting urban landscape water use from a human behavioral perspective. We found that the most significant factors predicting actual water use were the type of irrigation system and whether the location was a household or business. Attitudinal and motivational characteristics were not consistently associated with water use. We found that wasteful watering is the result of many factors embedded in the complex context of urban landscapes. This implies that water conservation programs should identify potential wasteful users through analyses of water billing data and direct water conservation measures at these users by focusing on site‐specific evaluations and recommendations. Water audits or water checks are one such tool that some communities have employed to help people understand and assess the quantity of water needed by and applied to their landscapes. This approach provides an opportunity to evaluate situational constraints at particular locations and design appropriate strategies for reducing water waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号