首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletonema costatum was grown at different steady-state growth rates in ammonium or silicate-limited chemostats. The culture was perturbed from its steady-state condition by a single addition of the limiting nutrients ammonium or silicate. The transient response was followed by measuring nutrient disappearance of the liliting perturbation experiment indicate that three distinct modes of uptake of the limiting nutrient can be distinguished; surge uptake (V s ), internally controlled uptake (V i ), and externally controlled uptake (V e ). An interpretation of these three modes of uptake is given and their relation to control of uptake of the limiting nutrient is discussed. The uptake rates of the non-limiting nutrients were shown to be depressed during the surge of the uptake of the limiting nutrient. Kinetic uptake parameters, K s and V max, were obtained from data acquired during the externally controlled uptake segment, V e . The same V max value of 0. 12 h-1, was obtained under either silicate or ammonium limitation. Estimates of K s were 0.4 g-at NH4-N l-1 and 0.7 g-at Si l-1. Short-term 15N uptake-rate measurements conducted on nitrogen-limited cultures appear to be a combination of V s or V i , or at lower substrate concentrations V s and V e . It is difficult to separate these different uptake modes in batch or tracer experiments, and ensuing problems in interpretation are discussed.Contribution No. 882 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA. This work represents portion of three dissertations submitted to the Department of Oceanography, University of Washington, Seattle, in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   

2.
The kinetic response of ammonium- or silicate-limited and ammonium- or silicatestarved populations of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida was determined by a single addition of the limiting nutrient to a steady-state culture and subsequent monitoring of the nutrient disappearance of the limiting and non-limiting nutrients at frequent time intervals. The kinetic response of nonlimited (nutrient) populations of these three species was also determined. Three distinct modes of the uptake of the limiting nutrient were observed for ammonium-or silicate-limited populations of these three species, surge uptake (V s ), internally (cellular) controlled uptake (V i ), and externally (ambient limiting nutrient concentration) controlled uptake (V e ). Non-limited populations did not exhibit the three distinct segments of uptake, V s , V i and V e . Estimates of the maximal uptake rate (V max) and the Michaelis constant (K s ) were obtained from nutrient-limited populations during the V e segment of the uptake curve. Pooled values of V e for the three ammonium-limited populations yielded V max and K s estimates of 0.16 h-1 and 0.5 g-at NH4–N l-1. Kinetic data derived from the V e segment of the uptake curve for silicate-limited populations yielded different values of V max and K s for each of the three species. In a number of parameters that were measured, T. gravida was clearly different from C. debilis and S. costatum and its recovery from nutrient starvation was the slowest. Recovery of all species from silicate limitation or starvation was slower than from ammonium limitation or starvation. Ammonium-starved populations maintained a maximal uptake rate at a substrate concentration an order of magnitude lower (0.1 g-at NH4–N l-1) than that observed for NH4-limited populations (1.0 g-at NH4–N l-1). Adaptation to the severity of the nutrient limitation occurred as changes in the magnitude of cellular characteristics, such as short-term uptake potential (V s ) and affinity for the substrate (K s ). The consequence of these results are discussed in terms of another possible mechanism to explain changes in species composition and succession in nutrient-depleted environments.Contribution No. 944 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

3.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

4.
Light intensity within the range of 40 to 210 E · m-2 · s-1 had relatively little effect on the abundance, length or distribution of Ceramium rubrum unicellular, hyaline hairs. External NH 4 + concentrations less than 0.5 M stimulated hair initiation and growth in apical regions of the thalli. Ammonium concentrations in excess of 20 M inhibited hair formation on all regions of the thalli. Ammonium uptake velocities of plants with hairs were approximately twice those of plants without hairs. These hairs may be adaptive to take advantage of intermittent bursts of nutrients by increasing the plant's surface area and, hence, the number of nutrient uptake sites.Woods Hole Oceanographic Institution Contribution No. 5526  相似文献   

5.
There is a global trend towards elevated nutrients in coastal waters, especially on human-dominated coasts. We assessed local- to regional-scale relationships between the abundance of epiphytic algae on kelp (Ecklonia radiata) and nutrient concentrations across much of the temperate coast of Australia, thus assessing the spatial scales over which nutrients may affect benthic assemblages. We tested the hypotheses that (1) percentage cover of epiphytic algae would be greater in areas with higher water nutrient concentrations, and (2) that an experimental enhancement of nutrient concentrations on an oligotrophic coast, to match more eutrophic coasts, would cause an increase in percentage cover of epiphytic algae to match those in more nutrient rich waters. Percentage cover of epiphytes was most extensive around the coast of Sydney, the study location with the greatest concentration of coastal chlorophyll a (a proxy for water nutrient concentration). Elevation of nitrate concentrations at a South Australian location caused an increase in percentage cover of epiphytes that was comparable to percentage covers observed around Sydneys coastline. This result was achieved despite our inability to match nutrient concentrations observed around Sydney (<5% of=" sydney=" concentrations),=" suggesting=" that=" increases=" to=" nutrient=" concentrations=" may=" have=" disproportionately=" larger=" effects=" in=" oligotrophic=">  相似文献   

6.
Dissolved inorganic carbon (DIC) is rarely considered limiting for macroalgae, but some research suggests that under conditions of N sufficiency, photosynthetic capacity is enhanced with DIC enrichment. During spring (April–May) and summer (July–August) 1993, we investigated the interactive effects of nitrogen (N) and DIC on photosynthetic capacity, growth, and nutrient uptake rates of the macroalgae, Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan), dominant species in a temperate eutrophic estuary (Cape Cod, Massachusetts, USA). Water-column CO2 concentrations showed significant diurnal fluctuations, ranging from a morning CO2 peak (21 M) to an afternoon low (13 M) during summer, probably associated with metabolic activities in a thick algal mat. Results from instantaneous photosynthesis measurements and microcosm experiments indicate that DIC limits photosynthetic capacity and growth rates of C. vagabunda during summer, perhaps related to tissue N sufficiency and low water-column CO2 concentrations. For example, this species showed enhanced growth (F=8.69, P<0.02) under DIC but not N enrichment. G. tikvahiae showed marginal DIC enhancement of maximum photosynthetic rate, while growth was significantly stimulated by addition of N. Reduced thallus N of this species during the summer further identifies N as the primary factor limiting growth. In addition, G. tikvahiae has the ability to use DIC in its several forms, while C. vagabunda primarily uses dissolved CO2. DIC enrichment resulted in a depression of NH4 + uptake rates for both species, particularly during summer at saturating (60 M) ammonium levels, suggesting competition between NH4 + uptake and DIC acquisition under conditions of N sufficiency. Dominance of C. vagabunda and G. tikvahiae in areas undergoing eutrophication has been attributed to their successful procurement and storage of N as well as to high growth rates. The present study revealed that under conditions of N sufficiency during summer, DIC may control rates of production of these opportunistic macroalgae.  相似文献   

7.
C. Dahm 《Marine Biology》1993,116(3):431-437
Growth and production of the shallow-water ophiuroids Ophiura albida and O. ophiura were investigated at two stations in the German Bight from 1988 to 1991. Growth rings visible on the vertebral ossicles of the ophiuroid arms were interpreted as annual age markers. A correction for overgrown first rings allows for more exact estimations of growth and age. In both species growth could be described by Von Bertalanffy growth functions with the asymptotic disc diameter D =10.1 mm, K=0.229 and t o=-0.192 in O. albida and D =27.7 mm, K=0.084 and t o=0.042 in O. ophiura. Somatic production was calculated from mass specific growth rates. Annual production:biomass (P:B) ratios were estimated at 0.32 for O. albida and 0.43 for O. ophiura.AWI Publication Number: 618  相似文献   

8.
Productivity was studied in two diatom species, Chaetoceros armatum T. West and Asterionella socialis Lewin and Norris, which form persistent dense blooms in the surf zone along the Pacific coast of Washington and Oregon, USA. Past observations have shown that surf-diatom standing stock usually declines in summer along with concentrations of nitrate and ammonium. Using the 14C method, photosynthetic rates in natural surf samples were measured monthly for one year (October 1981 through September 1982) at a study site on the Washington coast. Also measured were temperature, salinity, dissolved nutrients, particulate carbon and nitrogen (used as estimates of phytoplankton C and N), and chlorophyll a. Assimilation numbers (P max) were higher in summer (5 to 8 g C g-1 chl a h-1) than in winter (3 to 4gC). Specific carbon incorporation rates (µmax) showed no obvious seasonality, mostly falling within the range of 0.09 to 0.13 g C g-1 C(POC) h-1. The discrepancy between the seasonal trends for chlorophyll-specific and carbon-specific rates reflects a change in the carbon-to-chlorophyll ratio. Because of seasonal differences in daylength and light intensity, daily specific growth rates () are thought to be higher in summer than in winter. Neither ammonium enrichment assays nor particulate carbon-to-nitrogen ratios provided convincing evidence for nitrogen limitation during summer, and the observed changes in diatom abundance cannot be explained on this basis. Both the high diatom concentrations and their seasonal variations probably are due mainly to factors other than growth rates; two factors considered important are diatom flotation and seasonal changes in wind-driven water transport. C. armatum usually dominates the phytoplankton biomass in the surf zone, and evidence suggests that this species is strongly dominant in terms of primary production.Contribution No. 1391 of the School of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

9.
Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) have become dominant components of the macroalgal assemblage in Waquoit Bay, a Massachusetts embayment, possibly due to nitrogen (N) enrichment from anthropogenic inputs transported via groundwater. During 1989–1993, we measured site-related growth, ammonium uptake rates and tissue constituents of these macroalgae from areas subject to high N loading rates (Childs River) and lower N loadings rates (Sage Lot Pond). We also conducted in situ and microcosm enrichment experiments to determine what limited algal growth throughout the year. Our results indicated that these species are strongly affected by and have a strong impact on the N environment of this embayment. For example, C. vagabunda and G. tikvahiae from Childs River had higher light-harvesting pigments and tissue-N concentrations than Sage Lot Pond populations. Additionally, both Childs River populations showed greater site-specific growth and N uptake rates, particularly during the summer period of peak growth. In fact, maximum uptake rates of 90 and over 140 mol dry wt g-1 h-1 for Childs River C. vagabunda and G. tikvahiae, respectively, suggest that these species can remove substanital quantities of N from overlying waters, and may be responsible for low (often (<1 M) water-column nutrient concentrations during summer. In situ and tank enrichment experiments indicated that growth rates were limited by available N during summer, while P may be limiting during a brief period toward the end of the annual growth cycle (autumn). Under experimental enrichment, growth rates of Sage Lot Pond algae were similar to values measured at the site receiving higher N inputs, and generally, G. tikvahiae showed growth enhancement (up to 0.2 doublings d-1) under light-saturating conditions (0.5 m) while C. vagabunda showed nutrient-enhanced growth at 2.5 m. The effects of available nutrients on algal growth were strongly influenced by irradiance and temperature, resulting in a complex seasonal interaction that emphasized the dynamic nature of species response to N loading. Dominance by these two macroalgae in Waquoit Bay, as in other areas undergoing eutrophication, is likely related to physiological strategies that enable these species to tolerate large environmental variations, to take advantage of greater N availability and to survive indirect effects of N loading (e.g. reduced irradiance, anoxia).  相似文献   

10.
Fucus distichus L. was collected near Vancouver, Canada, in late fall and early winter, 1981. The effects of the forms of nitrogen (nitrate, ammonium or urea) and periodic exposure to air on growth, rhizoid development and nitrogen uptake in germlings was investigated. Gamete release, fertilization, germination and germling growth had no requirement for a specific form of nitrogen. Periodic exposure to air increased secondary rhizoid development twofold. Nitrate and ammonium uptake rates of the germlings were higher than for the mature thalli (20 to 40 times for nitrate and 8 times for ammonium), while the halfsaturation constant (K s) values for nitrate were similar (1 to 5 M). The germlings showed saturable uptake kinetics but the mature thalli did not. When germlings were exposed to air it caused a 70% decrease in nitrate uptake, but not change in ammonium uptake. Ammonium uptake in the mature thalli was proportional to the ambient ammonium concentration. Nitrate uptake in the mature thalli appeared to follow saturation kinetics at low nitrate concentrations, but showed a non-saturable component at concentrations greater than 10 M. Presence of ammonium inhibited nitrate uptake by the mature plants but not by the germlings.  相似文献   

11.
Gas-liquid interface measurements were conducted in a strongly turbulent free-surface flow (i.e., stepped cascade). Local void fractions, bubble count rates, bubble size distributions and gas-liquid interface areas were measured simultaneously in the air-water flow region using resistivity probes. The results highlight the air-water mass transfer potential of a stepped cascade with measured specific interface area over 650 m–1 and depth-average specific area up to 310 m–1. A comparison between single-tip and double-tip resistivity probes suggests that simple robust single-tip probes may provide accurate, although conservative, gas-liquid interfacial properties. The latter device may be used in the field and in prototype plants. Notation a = specific interface area (m–1); a mean = depth-average specific interface area (m–1): a mean=frac1Y 90limits sup> Y 90 sup 0(1–C)dy; C = local void fraction; C gas = dissolved gas concentration (kg m–3); C mean = depth-average mean air concentration defined as: C mean=1–d/Y 90; C s = saturation concentration (kg m–3); D = dimensionless air bubble diffusivity (defined by [1]); d = equivalent clear-water flow depth (m): d=limits sup> Y 90 sup 0(1–C) dy; dab = air bubble diameter (m); dc = critical flow depth (m); for a rectangular channel: d c=sqrt[3]q w 2/g; F = air bubble count rate (Hz); F max = maximum bubble count rate (Hz), often observed for C=50%; g = gravity acceleration (m s–2); h = step height (m); K L = liquid film coefficient (m s–1); K = integration constant defined as: K=tanh –1 sqrt0.1)+(2D)–1 [1]; L = chute length (m); N = velocity distribution exponent; ———– *Corresponding author, E-mail: h.chanson@mailbox.uq.edu.au Q w = water discharge (m3 s–1); q w = water discharge per unit width m2 s–1); t = time (s); V = local velocity (m s–1); V c = critical flow velocity (m s–1); for a rectangular channel: V c=sqrt[3]q w g V max = maximum air-water velocity (m s–1); V 90 = characteristic air-water velocity (m s–1) where C = 90%; W = channel width (m); x = longitudinal distance (m) measured along the flow direction (i.e., parallel to the pseudo-bottom formed by the step edges); y = distance (m) normal to the pseudo-bottom formed by the step edges; Y90 = characteristic distance (m) where C=0.90; Y 98 = characteristic distance (m) where C=0.98; = slope of pseudo-bottom by the step edges; = diameter (m).  相似文献   

12.
There is diverse phosphorus (P) in eutrophicated waters, but it is considered as a crucial nutrient for cyanobacteria growth due to its easy precipitation as insoluble salts. To uncover the effects of complex P nutrients on the emission of volatile organic compounds (VOCs) from cyanobacteria and their toxic effects on other algae, the VOCs from Microcystis flos-aquae supplied with different types and amount of P nutrients were analyzed, and the effects of VOCs and their two main compounds on Chlamydomonas reinhardtii growth were investigated. When M. flos-aquae cells were supplied with K2HPO4, sodium pyrophosphate and sodium hexametaphosphate as the sole P source, 27, 23 and 29 compounds were found, respectively, including furans, sulfocompounds, terpenoids, benzenes, aldehydes, hydrocarbons and esters. With K2HPO4 as the sole P source, the VOC emission increased with reducing P amount, and the maximum emission was found under Non-P condition. In the treatments of M. flos-aquae VOCs under Non-P condition and two main terpenoids (eucalyptol and limonene) in the VOCs, remarkable decreases were found in C. reinhardtii cell growth, photosynthetic pigment content and photosynthetic abilities. Therefore, we deduce that multiple P nutrients in eutrophicated waters induce different VOC emissions from cyanobacteria, and P amount reduction caused by natural precipitation and algal massive growth results in more VOC emissions. These VOCs play toxic roles in cyanobacteria becoming dominant species, and eucalyptol and limonene are two toxic agents.  相似文献   

13.
Gracilaria verrucosa (Hudson) Papenfuss exposed to nutrient enriched media (0.1 mM PO4; 1.0 mM NH 4 + ) by pulse feeding 2 h every third day for a period of 5 wk at 20°C and 25–30 salinity showed significantly higher rates of photosynthesis regardless of photon flux density correlated with increased pigment levels. Algae in nonenriched media showed significantly higher levels of soluble carbohydrates and decreased levels of phycoerythrin and chlorophyll a. Photosynthetic and respiratory responses to temperature 15°, 25°, 30°C and salinity (15, 25, 30 S) combinations indicate broad tolerances by both nutrient enriched and non-nutrient enriched algae. Photosynthetic and respiratory rates were highest at the high temperatures. Pulse-fed algae had significantly higher photosynthetic rates than non-nutrient enriched plants at all temperature and salinity combinations. Non-nutrient enriched algae had significantly higher respiratory rates than nutrient enriched algae at only 30°C and 15. The respiratory rates of both nutrient enriched and non-nutrient algae decreased under combinations of higher temperatures and salinities. G. verrucosa, grown without nutrients, has lower tolerances to environmental stresses.  相似文献   

14.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

15.
Photosynthetic parameters for netplankton (>22 m) and nanoplankton (<22 m) varied over similar ranges but exhibited different seasonal and geographic patterns of variation. Nanoplankton a was relatively constant (0.06 mg C [mg Chl · h]-1 [E m-2 s-1]-1), but P m B (mg C [mg Chl · d]-1) was an exponential function of temperature independent of nutrient concentration and vertical stability in the euphotic zone. The temperature function gives a P m B of 24 at 25°C for nanoplankton growing in an estuarine environment characterized by high nutrient concentrations and a shallow, stratified euphotic zone. Variations in netplankton a and P m B were less predictable and were not correlated with temperature, nutrients or vertical stability. Chain forming diatoms with small cells were able to achieve high (0.10 to 0.15) and P m B (20 to 24) that were 3 to 5 times higher than large-celled diatoms and dinoflagellates were able to achieve.  相似文献   

16.
Several species of phytoplankton were grown in unialgal, but not bacteria-free, cultures. These clones when exposed to varying salinities, from 5 to 35, showed a marked increase in their rates of photosynthesis at low salinities. The optimum requirement of salinity, however, varied in different species. Observations on the relative abundance of phytoplankton in an estuary, where the salinity changes were fairly large, confirmed that, within limits, waters with low salinities support a greater abundance of phytoplankton in nature. The wide adaptability of phytoplankton to changes in salinity corresponds to the conditions brought about by the monsoon system along the southwest coast of India, where large dilutions are associated with the enrichment of water with nutrients.  相似文献   

17.
This paper reports the fluvial fluxes and estuarine transport of organic carbon and nutrients from a tropical river (Tsengwen River), southwestern Taiwan. Riverine fluxes of organic carbon and nutrients were highly variable temporally, due primarily to temporal variations in river discharge and suspended load. The sediment yield of the drainage basin during the study period (1995–1996, 616 tonne km–2 year–1) was ca. 15 times lower than that of the long-term (1960–1998) average (9379 tonne km2 year–1), resulting mainly from the damming effect and historically low record of river water discharge (5.02 m3 s–1) in 1995. The flushing time of river water in the estuary varied from 5 months in the dry season to >4.5 days in the wet season and about 1 day in the flood period. Consequently, distributions of nutrients, dissolved organic carbon (DOC) and particulate organic carbon (POC) were of highly seasonal variability in the estuary. Nutrients and POC behaved nonconservatively but DOC behaved conservatively in the estuary. DOC fluxes were generally greater than POC fluxes with the exception that POC fluxes considerably exceeded DOC fluxes during the flood period. Degradation of DOC and POC within the span of flushing time was insignificant and may contribute little amount of CO2 to the estuary during the wet season and flood period. Net estuarine fluxes of nutrients were determined by riverine fluxes and estuarine removals (or additions) of nutrients. The magnitude of estuarine removal or addition for a nutrient was also seasonally variable, and these processes must be considered for net flux estimates from the river to the sea. As a result, nonconservative fluxes of dissolved inorganic phosphorus (DIP) from the estuary are –0.002, –0.09 and –0.59 mmol m–2 day–1, respectively, for dry season, wet season and flood period, indicating internal sinks of DIP during all seasons. Due to high turbidity and short flushing time of estuarine water, DIP in the flood period may be derived largely from geochemical processes rather than biological removal, and this DIP should not be included in an annual estimate of carbon budget. The internal sink of phosphorus corresponds to a net organic carbon production (photosynthesis–respiration, p–r) during dry (0.21 mmol m–2 day–1) and wet (9.5 mmol m–2 day–1) seasons. The magnitude of net production (p–r) is 1.5 mol m–2 year–1, indicating that the estuary is autotrophic in 1995. However, there is a net nitrogen loss (nitrogen fixation–denitrification < 0) in 1995, but the magnitude is small (–0.17 mol m–2 year–1).  相似文献   

18.
In a series of multifactorial laboratory experiments, Ulva lactuca discs were grown in an apparatus in which they were exposed simultaneously to 3 simulated current speeds (7.5, 15, 22.5 cm s-1) and a still control, and either 3 ammonium concentrations (0–10, 35–45 and 115–145 M) under ample uniform light (ca 200 E m-2 s-1) or 3 light intensities (approximately 35, 90 and 270 E m-2 s-1) with uniform surplus, ammonium. Disc growth rates were determined in each experiment as well as tissue nitrogen and carbon composition and fluxes of NH4, NO3/NO2 and PO4 in media. In a supplementary series of field experiments, U. lactuca discs were simultaneously exposed to 2 different water motion regimes in adjacent chambers at several sites characterized by widely different ammonium concentrations. In field experiments, growth rates were calculated and analyzed as a function of water motion at the various sites. The application of simulated current consistently enhanced disc growth rates in the laboratory, except at the lowest light intensity. In most cases this enhancement was fully realized at the lowest applied simulated current (7.5 cm s-1). Simulated current slightly enhanced ammonium uptake rates by U. lactuca discs, relative to rates in still water, except at the highest ammonium concentration. C:N ratios of discs generally declined with increases in simulated current, except at the highest ammonium concentration. This decline was primarily attributable to increases in per cent N and was, again, mainly realized at 7.5 cm s-1. The results suggested that simulated current compensated for N limitation, except when light was sufficiently low to become the overriding limiting factor, but that the enhancement of growth by simulated current could not be explained in terms of N metabolism alone. Field experiments showed that the higher level of water motion consistently enhanced growth at sites with comparatively low ammonium concentrations, but not at sites with moderate or high ammonium concentrations.  相似文献   

19.
We estimated silicate uptake kinetics for 8 spring diatom species using a model based on time series measurements of the depletion of dissolved silicate (DSi) and increases in biomass. Furthermore, the carbon: nitrogen: silicate stoichiometric relationships and maximum growth rates were determined. Differences in DSi uptake kinetics and maximum growth rate were distinct among the species. All the most common diatom species (Chaetoceros wighamii, Pauliella taeniata, Skeletonema costatum and Thalassiosira baltica) were relatively lightly silicified and had variable but relatively low half-saturation constants (K s ), indicating that they are well adapted to low DSi concentrations. The less common Diatoma tenuis and Nitzschia frigida had higher K s values, suggesting that they are more vulnerable to DSi limitation. The much used nitrogen:silicate ratio of 1 for marine diatom biomass was too low for most of the examined species, while a ratio of 2–3 seems to be more appropriate for these Baltic Sea species.  相似文献   

20.
The activity of glutamine synthetase (GS) was measured in the marine diatom Phaeodactylum tricornutum Bohlin (Strain SME) by a biosynthetic assay, based on -glutamyl hydroxamate synthesis, and referred to as the forwardreaction assay. The effects of pH, temperature and different homogenizing buffer preparations on enzyme activity, linearity of reactions, and substrate-saturation kinetics were investigated. The resultant data provide the basis for establishing optimum experimental conditions for a standard assay. Affinities of P. tricornutum GS for glutamate, ATP and Mg2+ were similar to those recorded elsewhere for a variety of other phytoplankton species using true biosynthetic assays based on release of inorganic phosphate, whereas the affinity for hydroxylamine was two orders of magnitude lower than that for ammonium, with an apparent K m value in the millimolar range. This, together with negative results obtained during earlier attempts to detect GS activity in P. tricornutum using the true biosynthetic assay, indicates that the GS of this alga has a lower affinity for ammonium than that of other phytoplankton species. Dual substrate kinetics demonstrated that apparent K m and V m values for glutamate were directly proportional to the concentration of ATP, thus giving indirect evidence of a correlation between GS activity and the adenylate energy charge. Comparisons between synthetase activities obtained with the optimized forward-reaction assay and transferase activities reported from other studies on various phytoplankton species revealed discrepancies which, to a great extent, probably arise from differences in the growth conditions of the organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号