首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small societies of totipotent individuals are good systems in which to study the costs and benefits of group living that are central to the origin and maintenance of eusociality. For instance, in eusocial halictid bees, some females remain in their natal nest to help rear the next brood. Why do helpers stay in the nest? Do they really help, and if yes, is their contribution large enough to voluntarily forfeit direct reproduction? Here, we estimate the impact of helpers on colony survival and productivity in the sweat bee Halictus scabiosae. The number of helpers was positively associated with colony survival and productivity. Colonies from which we experimentally removed one helper produced significantly fewer offspring. However, the effect of helper removal was very small, on average. From the removal experiment, we estimated that one helper increased colony productivity by 0.72 additional offspring in colonies with one to three helpers, while the increase was smaller and not statistically significant in larger colonies. We conclude that helpers do actually help in this primitively eusocial bee, particularly in small colonies. However, the resulting increase in colony productivity is low, which suggests that helpers may be constrained in their role or may attempt to reproduce.  相似文献   

2.
Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition, which might provide opportunity for females to manipulate the social behavior of their offspring. Megalopta genalis is a mass-provisioning facultatively eusocial sweat bee for which production of males and females in social and solitary nests is concurrent and asynchronous. Female offspring may become either gynes (reproductive dispersers) or workers (non-reproductive helpers). We predicted that if maternal manipulation plays a role in M. genalis caste determination, investment in daughters should vary more than for sons. The mass and protein content of pollen stores provided to female offspring varied significantly more than those of males, but volume and sugar content did not. Sugar content varied more among female eggs in social nests than in solitary nests. Provisions were larger, with higher nutrient content, for female eggs and in social nests. Adult females and males show different patterns of allometry, and their investment ratio ranged from 1.23 to 1.69. Adult body weight varied more for females than males, possibly reflecting increased variation in maternal investment in female offspring. These differences are consistent with a role for maternal manipulation in the social plasticity observed in M. genalis.  相似文献   

3.
Lasioglossum laevissimum was studied in Calgary, Alberta, where it is eusocial with one worker brood. Estimates of relatedness were obtained among various categories of nestmate based upon four polymorphic enzyme loci, two of which exhibited significant levels of linkage disequilibrium. Relatedness estimates among workers and among reproductive brood females were very close to the expected 0.75 value that obtains when nests are headed by one, singly mated queen. However, relatedness between workers and the reproductive brood females they reared was significantly lower than 0.75. A low frequency of orphaning with subsequent monopolisation of oviposition by one worker brood female in orphaned nests may explain these results. Workers were significantly more and queens significantly less closely related to male reproductives than expected if all males were to have resulted from queen-laid eggs. Orphaning and worker-produced males contribute to this result. The sex investment ratio was 1:2.2 in favour of females, in excellent agreement with the predictions based upon relative relatednesses between workers and reproductive brood males and females. Adaptive intercolony variation in investment ratios was detected: the sex ratio was more heavily female-biased in nests in which the relative relatedness asymmetry between workers and reproductive brood was more female-biased. The study species is the most weakly eusocial hymenopteran for which relatedness estimates and sex ratio data are available. With high relatedness among nestmates and a strongly female-biased sex ratio, this study suggests the importance of indirect fitness contributions in the early stages of social evolution. Correspondence to: L. Packer  相似文献   

4.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

5.
Summary The data on the frequency of mating by queens of eusocial Hymenoptera are reviewed.It is pointed out that the issue of sperm clumping is probably irrelevant to the evolution of eusociality.The hypothesis is presented that multiple mating is an adaptation for maintaining large colonies. In ants there is a significant relation between the size of the colony and the frequency of mating.The effect of multiple mating on the spread of a gene for worker behavior is explored. If a female mates twice, the effective number of matings is less than two except in the case of identical sperm contribution by the males.Sperm bias is defined as the contribution of unequal amounts of sperm by the males that mate with a queen. Sperm bias can be produced as a sampling phenomenon, by inter-male competition for females and by sperm competition.The relation between the ergonomic efficiency of the workers at the production of reproductives and the number of matings that is consistent with the evolution of eusociality is derived. If workers are only about 10% more efficient at producing reproductives within a eusocial colony than they are solitarily, then two matings by the queen will still produce a selective advantage to eusocial behavior.  相似文献   

6.
Kin selection theory predicts that workers in social insect colonies should preferentially aid close relatives over less related or unrelated individuals if such behaviors increase inclusive fitness. For example, a worker in a polygynous (multiple-queen) colony is predicted to tend its own mother rather than an unrelated queen if this nepotistic behavior increases its mother’s reproductive success in excess of costs. Despite predictions, experimental tests conducted in the social Hymenoptera have found no clear evidence of nepotism. No tests for nepotism have been carried out in the Isoptera (termites), another major insect taxon showing highly developed sociality. We tested for nepotistic behavior in the termite Nasutitermes corniger by determining if workers preferentially fed and groomed their mothers in a laboratory assay. We collected workers from nine naturally occurring multiple-queen colonies as they tended queens and determined their parentage using highly variable microsatellite markers. Our results provide no evidence that workers tend their mothers in preference to co-occurring queens. The absence of evidence for nepotism is consistent with previous results reported from numerous studies of eusocial hymenopterans.  相似文献   

7.
Eusociality in mammals is defined in the present paper by the following criteria: reproductive altruism (which involves reproductive division of labor and cooperative alloparental brood care), overlap of adult generations, and permanent (lifelong) philopatry. We argue that additional criteria such as the existence of castes, colony size, reproductive skew, and social cohesion are not pertinent to the definition of eusociality in mammals. According to our definition of mammalian eusociality, several rodent species of the African family Bathyergidae can be considered eusocial, including the naked mole-rat (Heterocephalus glaber), Damaraland mole-rat (Cryptomys damarensis), and several additional, if not all, species in the genus Cryptomys. Furthermore, some species of social voles (like Microtus ochrogaster) may also fulfill criteria of mammalian eusociality. Understanding the evolution of eusociality in mole-rats requires answers to two primary questions: (1) What are the preconditions for the development of their eusocial systems? (2) Why do offspring remain in the natal group rather than dispersing and reproducing? Eusociality in mammals is by definition a special case of monogamy (more specifically: monogyny one female breeding), involving prolonged pair bonding for more than one breeding period. We argue that eusociality in mole-rats evolved from a monogamous mating system where cooperative brood care was already established. A tendency for group living is considered to be an ancestral (plesiomorph) trait among African bathyergid mole-rats, linking them to other hystricognath rodents. A solitary lifestyle seen in some genera, such as Bathyergus, Georychus, and Heliophobius, is assumed to be a derived trait that arose independently in different lineages of bathyergids, possibly as a consequence of selective constraints associated with the subterranean environment. In proximate terms, in eusocial mole-rats either puberty is assumed to be developmentally delayed so that under natural conditions most animals die before dispersal is triggered (e.g., in the case of Heterocephalus) or dispersal is induced only by an incidental encounter with an unfamiliar, yet adequate sexual partner (e.g., in the case of Cryptomys). Ultimately, a combination of strategies involving either dispersal and/or philopatry can be beneficial, especially in a highly unpredictable environment. If genetic relatedness among siblings is high (e.g., a coefficient of relatedness of 0.5 or more), then philopatry would not invoke an appreciable loss of fitness, especially if the cost of dispersing is higher than staying within the natal group. High genetic relatedness is more likely in a monogamous mating system or a highly inbred population. In this paper, we argue that the preconditions for eusociality in bathyergid mole-rats were a monogamous mating system and high genetic relatedness among individuals. We argue against the aridity food-distribution hypothesis (AFDH) that suggests a causal relationship between cooperative foraging for patchily distributed resources and the origin of eusociality. The AFDH may explain group size dynamics of social mole-rats as a function of the distribution and availability of resources but it is inadequate to explain the formation of eusocial societies of mole-rats, especially with respect to providing preconditions conducive for the emergence of eusociality.  相似文献   

8.
The establishment of dominance hierarchies through aggressive interactions is very common in insect societies. In many cases, it is also mediated through pheromone emissions that enable individuals to evaluate the reproductive quality and level of aggressiveness of the dominant individual, thereby reducing the number and intensity of costly fights. Here, we studied these processes in the primitively eusocial bee Bombus terrestris, using a paired bee system. Specifically, we investigated the behavioral, reproductive, and pheromonal correlates of dominance establishment. Workers were shown to establish dominance hierarchies using overt aggression within 3–4 days. Thereafter, the aggression drastically decreased, and dominance was maintained mostly by ritualized agonistic behavior. The behaviorally dominant bee lost the ester compounds that workers produce in their Dufour's gland (the so-called “sterility signal”) concomitantly with the development of her ovaries. The other bee announced as subordinate by continuously producing high amounts of those esters. The hypothesis that sterility signaling serves as an appeasement signal to pacify the dominant bees is supported by the negative correlation found between the proportion of these esters and the level of aggression that the subordinate received from the dominant worker. Physical interactions, and presumably also the ensuing overt aggression between the bees, were essential for the above pheromonal change to take place and enabled the dominant workers to develop their ovaries and to lay eggs. The subordinate bee’s signaling of non-reproductive status may minimize energy expenditure in costly fights and help stabilize the reproductive division of labor among workers.  相似文献   

9.
Several insect pheromones are multifunctional and have both releaser and primer effects. In honey bees (Apis mellifera), the queen mandibular pheromone (QMP) and e-beta-ocimene (eβ), emitted by young worker larvae, have such dual effects. There is increasing evidence that these multifunctional pheromones profoundly shape honey bee colony dynamics by influencing cooperative brood care, a fundamental aspect of eusocial insect behavior. Both QMP and eβ have been shown to affect worker physiology and behavior, but it has not yet been determined if these two key pheromones have interactive effects on hypopharyngeal gland (HPG) development, actively used in caring of larvae, and ovary activation, a component of worker reproductive physiology. Experimental results demonstrate that both QMP and eβ significantly suppress ovary activation compared to controls but that the larval pheromone is more effective than QMP. The underlying reproductive anatomy (total ovarioles) of workers influenced HPG development and ovary activation, so that worker bees with more ovarioles were less responsive to suppression of ovary activation by QMP. These bees were more likely to develop their HPG and have activated ovaries in the presence of eβ, providing additional links between nursing and reproductive physiology in support of the reproductive ground plan hypothesis.  相似文献   

10.
Summary Two types of workers were recognized in colonies of Pristomyrmex pungens: extranidal workers (which characteristically walk outside the nest) and intranidal workers (which characteristically stay inside the nest). The ovaries of extranidal workers showed little activity, whereas those of intranidal workers showed high activity and often contained mature oocytes. I therefore conclude that only the intranidal workers reproduce. A behavioral repertoire of 103 individuals was obtained and used to infer group subdivision using cluster analysis; in addition, principal component analysis was performed on the intranidal workers in this set. These data enabled objective separation of extranidal and intranidal workers. Intranidal workers were larger in size on average than extranidal workers; however, the distributions overlapped. Three tests for further subdivision within the group of intranidal workers indicated that such subdivision is weak, and it is also likely that all intranidal workers lay eggs. There was no significant correlation between body size and reproductive status. The number of mature oocytes per ant fitted a Poisson distribution, and the first two principal component factors scores of behavior showed significant correlation with head width. All extranidal workers had resorbed ovaries and also had yellow bodies (which indicated a history of oviposition). When and how the differentiation between the reproductive intranidal workers and the non-reproductive extranidal workers occurred is discussed. The best-supported hypothesis is that extranidal workers are old intranidal ones. Neither males nor inseminated workers were found in any smaples collected in the field or studied in the laboratory, which greatly strengthens earlier suggestions that Pristomyrmex pungens is the first-known ant to be obligately thelytokous. These findings indicate that Pristomyrmex pungens is no longer eusocial, although it has the highest form of social behavior of any thelytokous species; they also raise the question of whether or not there are factors promoting the loss of eusociality and sexuality in this species. Ecological factors are tentatively indicated, namely, the need to maintain large colonies in the face of a nomadic lifestyle involving frequent colony fragmentation.  相似文献   

11.
Summary Hamilton's (1964) hypothesis linking haplodiploidy and eusociality in the Hymenoptera could be reconciled with the occurrence of polygyny and multiple insemination if workers are able to distinguish full (3/4 related) sisters from other familiar matri- and patrilines within the colony, and direct altruistic behavior toward them preferentially. We examined this possibility in small genetically mixed nests of the carpenter ant Camponotus floridanus, formed by the transfer of worker pupae from two unrelated source colonies. In 120 h of observation on 12 queenright and 12 queenless nests, more than 15,000 behavioral interactions were recorded. Workers antennated familiar nonkin significantly more frequently than familiar sisters. However, they failed to discriminate consistently between kin and non-kin in food exchanges and grooming. Aggressive behavior was occasionally observed in some queenless nests, but almost never in the presence of a queen. When aggression did occur, it was directed significantly more often toward non-kin. Though related adult workers did not cooperate preferentially, the biases in antennation and aggression do indicate an ability to discriminate familiar kin from familiar nonkin, which may be employed in other contexts such as the rearing of reproductive brood.  相似文献   

12.
Most species of social insect are characterized by a reproductive division of labor among morphologically specialized individuals. In contrast, there exist many species where all individuals are morphologically identical and dominance relationships determine which individuals mate and/or reproduce. In newly founded multiple-foundress associations of the social wasp Polistes dominulus, foundresses establish dominance hierarchies where the top-ranked (alpha) female monopolizes egg laying. The possibility that chemical cues are used for recognition of egg-laying individuals has not been explored in this wasp. Using non-destructive techniques, we examined the relationship between ovarian activity and the proportions of cuticular hydrocarbons of three female types (dominant and subordinate foundresses and workers) in 11 colonies. Immediately after nest foundation, no differences were found between alpha and subordinate females. In contrast, at worker emergence, alpha females were statistically distinguishable from both subordinates and workers. We experimentally removed the alpha female in 5 of the original nests and reanalyzed hydrocarbon proportions of the new dominant individual. Replacement individuals were all found to acquire a cuticular signature characteristic of the alpha female. This suggests that cuticular hydrocarbons are used as cues of ovarian activity in P. dominulus, and we discuss our results in terms of a switch from behavioral dominance to chemical signaling in this wasp.  相似文献   

13.
Worker sterility in the bumblebee Bombus terrestris is conditional and is linked to the social development of the colony. Workers refrain from reproducing or overtly challenging the queen until gyne production has initiated, at the so-called competition point (CP). It is not known whether this behavior is hard-wired or workers show reproductive plasticity. It also remains unclear whether worker reproductive decision is under queen and/or worker control. In this study, we tested worker reproductive plasticity in an attempt to assess whether and under which conditions worker sterility/fertility are reversible. We introduced egg-laying workers into colonies with different social structures for 1 week then monitored their reproductive status. We revealed a remarkable reproductive plasticity in the introduced workers that was social-condition-dependent. In the presence of a pre-CP queen, the introduced workers reverted to sterility, whereas in the presence of a post-CP queen, such workers remained egg-layer. Reversion to sterility does not occur when direct contact with the queen is prevented, as the introduced workers remained egg-layer in the queenright colonies with a confined queen. Egg-laying workers that were introduced into queenless colonies mostly maintained their fertility regardless of colony social phase. This shows that worker transition from cooperative to selfish behavior is reversible depending on the social context.  相似文献   

14.
In many polygynous ant species, established colonies adopt new queens secondarily. Conflicts over queen adoption might arise between queens and workers of established colonies and the newly mated females seeking adoption into nests. Colony members are predicted to base adoption decisions on their relatednesses to other participants, on competition between queens for colony resources, and on the effects that adopted queens have on colony survivorship and productivity. To provide a better understanding of queen-adoption dynamics in a facultatively polygynous ant, colonies of Myrmica tahoensis were observed in the field for 4 consecutive years and analyzed genetically using highly polymorphic microsatellite DNA markers. The extreme rarity of newly founded colonies suggests that most newly mated queens that succeed do so by entering established nests. Queens are closely related on average (rˉ = 0.58), although a sizable minority of queen pairs (29%) are not close relatives. An experiment involving transfers of queens among nests showed that queens are often accepted by workers to which they are completely unrelated. Average queen numbers estimated from nest excavations (harmonic mean = 1.4) are broadly similar to effective queen numbers inferred from the genetic relatedness of colony members, suggesting that reproductive skew is low in this species. Queens appear to have reproductive lifespans of only 1 or 2 years. As a result, queens transmit a substantial fraction of their genes posthumously (through the reproduction of related nestmates), in comparison to direct and indirect reproduction while they are alive. Thus queens and other colony members should often accept new queens when doing so will increase colony survivorship, in some cases even when the adopted queens are not close relatives. Received: 20 February 1996/Accepted after revision: 25 May 1996  相似文献   

15.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

16.
In most social insect colonies, workers do not attempt to lay eggs in the presence of a queen. However, in the honey bee (Apis mellifera), a rare phenotype occurs in which workers activate their ovaries and lay large numbers of male eggs despite the presence of a fecund queen. We examined the proximate mechanisms by which this ‘anarchistic’ behaviour is expressed. We tested the effects of brood and queen pheromones on retinue attraction and worker ovary activation using caged worker bees. We found no difference between the anarchistic and wild type queen pheromones in the retinue response elicited in either wild type or anarchistic workers. Further, we found that anarchistic queens produce a pheromone blend that is as effective at inhibiting ovary activation as the wild type queen pheromone. However, anarchistic workers are less inhibited by queen pheromones than their wild type counterparts, in a dose-dependent manner. These results show that the anarchistic phenomenon is not due to changes in the production of queen pheromones, but rather is due in part to a shift in the worker response to these queen-produced signals. In addition, we demonstrate the dose-dependent nature of the effect of queen pheromones on honey bee worker ovary activation.  相似文献   

17.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

18.
Genetic variability within insect societies may provide a mechanism for increasing behavioral diversity among workers, thereby augmenting colony efficiency or flexibility. In order to assess the possibility that division of labor has a genetic component in the eusocial wasp Polybia aequatorialis, I asked whether the genotypes of workers within colonies correlated with behavioral specialization. Workers specialized by foraging for one of the four materials (wood pulp, insect prey, nectar, or water) gathered by their colonies. I collected foragers on 2 days from each of three colonies and identified the material the foragers were carrying when collected. I produced random amplified polymorphic DNA (RAPD) markers from the genomic DNA of these foragers and estimated genotypic similarity of foragers based on sharing of variable RAPD marker bands. Contingency tests on 20 variable loci per colony showed statistically significant (P <0.05) biases in RAPD marker frequencies among forager types in the three colonies. Patterns of association of RAPD marker bands with specializations were constant in two colonies, but changed between collection days in one colony. RAPD marker biases suggest that division of labor among workers includes a genetic component in P. aequatorialis. Colony-level selection on variation in division of labor is a possible factor favoring the evolutionary maintenance of high genotypic variability (low relatedness) in epiponine wasp colonies and in other eusocial insects. Received: 18 July 1995/Accepted after revision: 1 October 1995  相似文献   

19.
The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response.  相似文献   

20.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号