首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new methodology is described for determining the atmospheric emission rate of pollutants from large heterogeneous area sources, such as hazardous waste sites. The procedure hinges upon measuring average pollutant concentrations, at three or more different elevations, while traversing the plume downwind of the area source. A helium-filled tethersonde balloon is used to elevate the sampling lines to their appropriate height. During plume traversing the sampling rate is adjusted to be proportional to the sine of the angle between the wind vector and the direction of the traverse path. The average concentrations are corrected for any upwind, background concentration and then used to derive an average vertical concentration profile. This profile Is numerically integrated, with the wind velocity profile, over the pollutant boundary layer to yield the area source emission rate. The methodology was tested on several large industrial effluent lagoons and proved to be easy to use, robust, and precise.  相似文献   

2.
Maintenance of Department of Defense (DoD) weapon systems, conducting battlefield training exercises as well as meeting military construction and/or demolition schedules, invariably generate fugitive air emissions, many of which are visible. Although there is no codified federal method for quantifying fugitive emissions opacity, many state and local air regulatory agencies have instituted enforceable fugitive emission opacity standards at DoD facilities. The current study focused on comparing the performance of the digital opacity compliance system (DOCS) with U.S. Environment Protection Agency Method 9 (Method 9) certified human observers in quantifying the visible opacity associated with fugitive emissions produced using a commercial fog generator. By systematically repositioning both DOCS cameras and Method 9-certified observers during field testing, differences in method performance as a function of observational locations were documented. At both the 30- and 300-ft off-set distances, opacity levels reported by the DOCS technology and Method 9-certified smoke readers were found to be statistically different at the 99% confidence level. Alternatively, at the 90- and 150-ft off-set distances, results suggested that there was an insignificant difference at the 99% confidence level between the two methods. Comparing the magnitude of the each method's standard deviation suggested that, at the 30-ft off-set distance, the DOCS technology was consistently more precise than Method 9-certified readers regardless of the observer's downwind distance. However, at the 90, 150, and 300-ft off-set distances, method precision seemed to vary as a function of both off-set and downwind distance. The primary factor affecting the consistency in opacity measurements appeared to be the impact of ground-level air turbulence on fog plume dispersion and transport. Field observations demonstrated that localized wind shear played a critical and decisive role in how and to what extent fugitive emissions opacity could be determined, regardless of the method selected.  相似文献   

3.
An ambient air monitoring program to characterize airborne emissions from the Exxon petroleum refinery at Benicia, California was conducted during September 8–22, 1975. Ground level sampling facilities and an instrumented aircraft provided an integrated, three-dimensional monitoring network. Measurements made during the study included ozone, oxides of nitrogen, methane, carbon monoxide, individual C2-C6 hydrocarbons, halocarbons, condensation nuclei, visual distance and various meteorological parameters. The study focused on three major areas: (1) the characterization of gaseous components within the refinery effluent, especially non-methane hydrocarbons and ozone, (2) natural sunlight bag irradiation experiments to determine the ozone forming potential of refinery emissions, and (3) an investigation of changes in plume chemistry as refinery emissions were transported downwind.  相似文献   

4.
Vertical profiling with point samplers is an accepted method for quantifying the fluxes of PM10 from non-point fugitive dust sources, but is limited by uncertainty in estimates of the actual height of the dust plume, especially for plumes that exceed the highest sampling height. Agricultural land preparation operations in the San Joaquin Valley were monitored using upwind–downwind vertical PM10 profiles and data collected during the first successful experiment to include light detection and ranging (lidar), in 1998, were analyzed to provide modeling criteria for the 1996 and 1997 data. A series of six comprehensive PM10 tests with concurrent lidar data was examined to: (a) develop a framework for analyzing upwind–downwind point PM10 concentration profiles of land preparation operations (disking, listing, root cutting, and ripping) and (b) identify conditions under which the field sampling strategies affect the reproducibility of PM10 concentration measurements. Lidar data were used to verify that the plume heights and shapes extrapolated from the point sampler vertical profiles adequately described the plumes. The shortcomings of the vertical profiling technique and lidar methods are discussed in the light of developing efficient robust methods for accurate PM10 emissions quantification from complex non-point sources.  相似文献   

5.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using U.S. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r 2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.

Implications The OTM-10 method is being proposed by EPA to quantify surface methane emissions from landfill covers. This study of 20 landfills across the United States was done to determine the efficacy of using OTM-10 for this purpose. Two recently published models were used to evaluate the methane flux results found with VRPM optical remote sensing. The results should provide a sense of the practicality of the method, its limitations at landfills, and the impact of climate upon the cover's methane flux. Measured field data may assist landfill owners in refining previously modeled methane emission factor default values.  相似文献   

6.
Abstract

Refineries are a source of emissions of volatile hydrocarbons that contribute to the formation of smog and ozone. Fugitive emissions of hydrocarbons are difficult to measure and quantify. Currently these emissions are estimated based on standard emission factors for the type and use of equipment installed. Differential absorption light detection and ranging (DIAL) can remotely measure concentration profiles of hydrocarbons in the atmosphere up to several hundred meters from the instrument. When combined with wind speed and direction, downwind vertical DIAL scans can be used to calculate mass fluxes of the measured gas leaving the site. Using a mobile DIAL unit, a survey was completed at a Canadian refinery to quantify fugitive emissions of methane, C2+ hydrocarbons, and benzene and to apportion the hydrocarbon emissions to the various areas of the refinery. Refinery fugitive emissions as measured with DIAL during this demonstration study were 1240 kg/hr of C2+ hydrocarbons, 300 kg/hr of methane, and 5 kg/hr of benzene. Storage tanks accounted for over 50% of the total emissions of C2+ hydrocarbons and benzene. The coker area and cooling towers were also significant sources. The C2+ hydrocarbons emissions measured during the demonstration amounted to 0.17% of the mass of the refinery hydrocarbon throughput for that period. If the same loss were repeated throughout the year, the lost product would represent a value of US$3.1 million/yr (assuming US$40/bbl). The DIAL-measured hourly emissions of C2+ hydrocarbons were 15 times higher than the emission factor estimates and gave a different perspective on which areas of the refinery were the main source of emissions. Methods, such as DIAL, that can directly measure fugitive emissions would improve the effectiveness of efforts to reduce emissions, quantify the reduction in emissions, and improve the accuracy of emissions data that are reported to regulators and the public.  相似文献   

7.
Refineries are a source of emissions of volatile hydrocarbons that contribute to the formation of smog and ozone. Fugitive emissions of hydrocarbons are difficult to measure and quantify. Currently these emissions are estimated based on standard emission factors for the type and use of equipment installed. Differential absorption light detection and ranging (DIAL) can remotely measure concentration profiles of hydrocarbons in the atmosphere up to several hundred meters from the instrument. When combined with wind speed and direction, downwind vertical DIAL scans can be used to calculate mass fluxes of the measured gas leaving the site. Using a mobile DIAL unit, a survey was completed at a Canadian refinery to quantify fugitive emissions of methane, C2+ hydrocarbons, and benzene and to apportion the hydrocarbon emissions to the various areas of the refinery. Refinery fugitive emissions as measured with DIAL during this demonstration study were 1240 kg/hr of C2+ hydrocarbons, 300 kg/hr of methane, and 5 kg/hr of benzene. Storage tanks accounted for over 50% of the total emissions of C2+ hydrocarbons and benzene. The coker area and cooling towers were also significant sources. The C2+ hydrocarbons emissions measured during the demonstration amounted to 0.17% of the mass of the refinery hydrocarbon throughput for that period. If the same loss were repeated throughout the year, the lost product would represent a value of US$3.1 million/yr (assuming US$40/bbl). The DIAL-measured hourly emissions of C2+ hydrocarbons were 15 times higher than the emission factor estimates and gave a different perspective on which areas of the refinery were the main source of emissions. Methods, such as DIAL, that can directly measure fugitive emissions would improve the effectiveness of efforts to reduce emissions, quantify the reduction in emissions, and improve the accuracy of emissions data that are reported to regulators and the public.  相似文献   

8.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume.  相似文献   

9.
From 1995 to 2004, in Genoa, Italy, daily concentrations of twelve polycyclic aromatic hydrocarbons (PAHs) were measured in particulate phase (PM10), around a coke oven plant in operation from the 1950s and closed in 2002. The study permitted to identify the coke oven as the main PAH source in Genoa, causing constant exceeding of benzo(a)pyrene (BaP) air quality target (1.0 ng/m3) in the urban area till 1,900 meters distance downwind the plant. For this reason the plant was closed. Distance and daily hours downwind the coke plant were the main sources of variability of toxic BaP equivalent (BaPeq) concentrations and equations that best fitted these variables were experimentally obtained. During full plant activity, annual average BaPeq concentrations, measured in the three sampling sites aligned downwind to the summer prevalent winds, were: 85 ng/m3 at 40 m (site 2, industrial area), 13.2 ng/m3 at 300 m (site 3, residential area) and 5.6 ng/m3 at 575 m (site 4, residential area).

Soon after the coke oven's closure (February 2002) BaPeq concentrations (annual average) measured in residential area, decreased drastically: 0.2 ng/m3 at site 3, 0.4 ng/m3 at site 4. Comparing 1998 and 2003 data, BaPeq concentrations decreased 97.6% in site 3 and 92.8% in site 4.

Samples collected at site 3, during the longest downwind conditions, provided a reliable PAH profile of fugitive coke oven emissions. This profile was significantly different from the PAH profile, contemporary found at site 5, near the traffic flow.

This study demonstrates that risk assessment based only on distance of residences from a coke plant can be heavily inaccurate and confirmed that seasonal variability of BaPeq concentrations and high variability of fugitive emissions of PAHs during coke oven activities require at least one year of frequent and constant monitoring (10-15 samples each month).

Implications: Around a coking plant, polycyclic aromatic hydrocarbons (PAHs), concentrations depend mainly on downwind hours and distance. Equations that best fit these variables were experimentally calculated. Fugitive emissions of an old coke oven did not comply with the threshold BAP air concentration proposed by the World Health Organization (WHO), up to 1,900 m distance. The study identified the PAH profile of fugitive emissions of a coke oven, statistically different from the profile of traffic emissions. During its activity, in the Genoa residential area, 575 m away from the plant, 92.8% of found PAHs was due to coke oven emission only.  相似文献   

10.
ABSTRACT

This paper presents a new approach to localize point emissions from ground-level fugitive gaseous air pollution sources. We estimate the crosswind plume's ground-level peak location downwind from the source by combining smooth basis functions minimization (SBFM) with path-integrated optical remote sensing concentration data acquired along the crosswind direction in alternating beam path lengths. Peak location estimates, in conjunction with real-time measured wind direction data, are used to reconstruct the fugitive source location. We conducted a synthetic data study to evaluate the proposed peak location SBFM reconstruction. Furthermore, the methodology was validated with open-path Fourier transform infrared concentration data collected with wind direction data downwind from a controlled point source. This approach was found to provide reasonable estimates of point source location. The field study reconstructed source location was within several meters of the real source location.  相似文献   

11.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using US. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/ day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.  相似文献   

12.
A new method was developed for determining the contribution of one pollutant source to the air quality in an industrialized region. Although the method is general, it is presented in reference to a 130,000 bbl/day petroleum refinery and its effect on ambient SO2 concentrations in Sarnia, Ontario. The plumes from SO2 emitters located upwind of the refinery were represented by a single hypothetical plume which influences monitoring stations located upwind as well as downwind from the refinery. However, the refinery emissions affect only the downwind stations. A simple equation was derived by means of which the concentration at the downwind station could be calculated from the concentration at the upwind station and the refinery emission. This equation contains two coefficients A and B which were evaluated such that the difference between the cumulative frequency distributions of the measured and calculated SO2 concentrations at the downwind station was minimized. For the meteorological conditions and monitoring stations considered, it was found that the refinery contributed less than 4.5 pphm to ambient SO2 concentrations over 1 hr periods. This result and the validity of the method are discussed.  相似文献   

13.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

14.
This paper describes and theoretically evaluates a recently developed method that provides a unique methodology for mapping gaseous emissions from non-point pollutant sources. The horizontal radial plume mapping (HRPM) methodology uses an open-path, path-integrated optical remote sensing (PI-ORS) system in a horizontal plane to directly identify emission hot spots. The radial plume mapping methodology has been well developed, evaluated, and demonstrated. In this paper, the theoretical basis of the HRPM method is explained in the context of the method's reliability and robustness to reconstruct spatially resolved plume maps. Calculation of the condition number of the inversion's kernel matrix showed that this method has minimal error magnification (EM) when the beam geometry is optimized. Minimizing the condition number provides a tool for such optimization of the beam geometry because it indicates minimized EM. Using methane concentration data collected from a landfill with a tunable diode laser absorption spectroscopy (TDLAS) system, it is demonstrated that EM is minimal because the averaged plume map of many reconstructed plume maps is very similar to a plume map generated by the averaged concentration data. It is also shown in the analysis of this dataset that the reconstructions of plume maps are unique for the optimized HRPM beam geometry and independent of the actual algorithm applied.  相似文献   

15.
There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste “data” and evaluate the impact on methane emissions. We estimate Irish historical landfill quantities from 1960–2008 and Irish methane emissions from 1968–2006. A model is constructed in which waste generation is a function of income, price of waste disposal and, household economies of scale. A transformation ratio of waste to methane is also included in the methane emissions model. Our results contrast significantly with the Irish Environmental Protection Agency’s (EPA) figures due to the differences in the underlying assumptions. The EPA’s waste generation and methane emission figures are larger than our estimates from the early 1990s onwards. Projections of the distance to target show that the EPA overestimates the required policy effort.  相似文献   

16.
Hegde U  Chang TC  Yang SS 《Chemosphere》2003,52(8):1275-1285
To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.  相似文献   

17.
Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

18.
One of the most significant environmental problems arising from landfills is the emission of methane into the atmosphere. In this study, methane emissions from a currently in-use Spanish landfill were modeled as well as being experimentally measured using a two-step method. The first step involved a qualitative walkover survey to detect where gases were being emitted on the surface of the landfill. The second stage comprised a quantitative analysis of these surface methane emissions at a selected number of points on the landfill surface using a specially designed flux chamber. The statistical analysis of the data obtained was based on the Sichel function and resulted in an average emission rate of 74.9 g·m?2·day?1, with 27.8 and 202.1 g·m?2·day?1 as the lower and upper limits of the 95% confidence interval, respectively. The total emission for the landfill, with an emitting surface of 335,000 m2, is 9.16 × 103 ton/yr. These values have been compared with those from three different models, with the model results being above the calculated mean emissions measured at the landfill, but below the upper confidence limit at 95%.

Implications: One of the main environmental problems arising from the presence of landfills is the emission of biogas (which mainly contains methane and carbon dioxide) into the atmosphere. Several experimental methods as well as models have been developed to quantify these emissions. In this work, the authors have compared the results obtained using experimental measurements with those provided by some local and international models using the default parameters proposed. The results obtained from the experimental method are in accordance with those provided by the models, although the models could be slightly overestimating these emissions.  相似文献   


19.
A global three-dimensional (3D) transport–dispersion model was used to simulate Krypton-85 (85Kr) background concentrations at five sampling locations along the US east coast during 1982–1983. The samplers were established to monitor the 85Kr plume downwind of the Savannah river plant (SRP), a nuclear fuel reprocessing facility. The samplers were located 300–1000 km downwind of the SRP. In the original analyses of the measurements, a constant background concentration, representing an upper-limit and different for each sampling station, was subtracted from the measurements to obtain the part of the measurement representing the SRP plume. The use of a 3D global model, which includes all major 85Kr sources worldwide, was able to reproduce the day-to-day concentration background variations at the sampling locations with correlation coefficients of 0.36–0.46. These 3D model background predictions, without including the nearby SRP source, were then subtracted from the measured concentrations at each sampler, the result representing the portion of the measurement that can be attributed to emissions from the SRP. The revised plume estimates were a factor of 1.3–2.4 times higher than from the old method using a constant background subtraction. The greatest differences in the SRP plume estimates occurred at the most distant sampling stations.  相似文献   

20.
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号