首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
采用γ-氨丙基三乙氧基硅烷化学修饰活化后的硅胶,以戊二醛为交联剂,接上羧甲基壳聚糖,继而接枝上β-环糊精作为功能单体,制备了一种用于分离富集水样中Cu(Ⅱ)的固相萃取新材料。利用红外光谱(FT-IR)、比表面分析(BET)、X射线衍射光谱(XRD)以及热重分析(TG)等方法对吸附剂进行结构表征。采用火焰原子吸收(FAAS)作为检测手段,考察了溶液p H、振荡时间、吸附剂用量、样品流速、洗脱液浓度和体积等对吸附剂吸附Cu(Ⅱ)的影响。吸附剂饱和吸附容量为9.37 mg/g,最大富集倍数高达350。吸附过程能用准二级动力学模型和Langmuir等温吸附方程进行很好的拟合。应用于环境水样中Cu(Ⅱ)的分离富集与测定,回收率在96.8%~105.2%之间,效果较好。  相似文献   

2.
以无机材料硅胶为基体,利用有机硅烷偶联剂KH550、乙二醛和戊二醛为原料进行希夫碱反应,分别合成含有C=N的硅胶键合醛基型吸附材料(乙二醛修饰的为SG-1、戊二醛修饰的为SG-2),并采用红外光谱、热重、扫描电子显微镜和孔结构等分析手段对吸附材料进行了表征。结果表明:(1)从微观上看,硅胶表面较光滑;SG-1、SG-2表面的粗糙度、孔隙率都较硅胶明显增加,有利于吸附实验的进行。(2)拟二级动力学方程更适合描述SG-1、SG-2对重金属离子的吸附行为,吸附过程由化学吸附过程决定。SG-1、SG-2对4种重金属离子的吸附热力学过程适合用Langmuir等温吸附方程解释,其过程是单分子层吸附。(3)SG-1、SG-2对4种重金属离子的静态饱和吸附量均表现为Cu(Ⅱ)Ni(Ⅱ)Pb(Ⅱ)Cr(Ⅵ)。SG-1、SG-2对Cu(Ⅱ)静态饱和吸附量分别达到9.401、9.738mg/g。(4)SG-1、SG-2对4种重金属离子解吸率与解吸液(5%(质量分数)硫脲+0.1mol/L盐酸)体积并不呈现正相关,解吸率基本可达到90%,再生性能良好,当解吸液体积为6mL时解吸率最大。  相似文献   

3.
本文基于钴(Ⅱ)离子对丙酮—H_2O_2—ClO~-化学发光反应的催化作用,通过优化催化反应条件,建立了痕量钴的化学发光分析法。方法检出限为0.8ppb,线性响应范围为4.0×10~(-8)g/ml~1.0×10~(-6)g/ml,且具有较好的选择性。本法应用于实际水样中痕量钴的测定,结果较好,钴回收率为94%~106%。  相似文献   

4.
以"grafting to"法制备的氧化石墨烯/聚酰胺-胺(GO/PAMAMs)作为吸附剂,研究了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附行为,考察了溶液pH值、吸附时间、初始离子浓度及吸附剂用量等因素对吸附过程的影响,探讨了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附机理。研究表明:GO/PAMAMs对Cu(Ⅱ)的吸附最佳pH值是5.0,Cd(Ⅱ)的最佳pH值为5.5;Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附过程符合Lagergren准二级动力学模型,等温吸附过程遵循Langmuir模型;热力学研究表明Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的吸附是自发进行的吸热过程,且属于物理吸附。  相似文献   

5.
MnO2表面结合Fe(Ⅱ)对三氯乙烯的还原脱氯作用   总被引:1,自引:0,他引:1  
通过批量实验研究了Fe(Ⅱ)、MnO2和MnO2表面吸附Fe(Ⅱ)这3种体系对溶液中三氯乙烯的还原脱氯作用。发现Fe(Ⅱ)吸附在MnO2表面时,对三氯乙烯的脱氯作用最强,氯代降解产物为顺-二氯乙烯(cis-DCE),且反应符合准一级动力学。进一步实验表明,保持Fe(Ⅱ)浓度为1 mmol/L,反应速率常数kobs和三氯乙烯去除率随pH升高(5.0~9.0)而增加,最大值分别为1.62×10-1h-1、70.4%;固定pH=7.0,kobs和三氯乙烯去除率随其Fe(Ⅱ)浓度增加(1~3mmol/L)而增大。Fe(Ⅱ)浓度继续增加,kobs和三氯乙烯去除率反而减小。pH=7.0,Fe(Ⅱ)浓度为3 mmol/L时,kobs和三氯乙烯去除率达到最大值,分别为2.86×10-1h-1和85.7%。  相似文献   

6.
Ⅰ水中钴的测定(一) 简介钴试剂4-[(5-氯-2-吡啶)偶氮]-1,3-二氨基苯(简称5-Cl-PADAB)作为测定钴的分光光度法试剂,具有很高的灵敏度和很好的选择性。在pH5的磷酸盐缓冲溶液中的钴离子以2∶1结合生成稳定的红色络合物。该络合物能被TBP 3-甲基-1-丁醇混合萃取剂定量萃取。再用磷酸—盐酸混合酸反萃取于水相中,在570毫微米波长处测吸光度。此法可消除铁(Ⅲ),铬(Ⅵ)等的干扰。方法简便、快速。最低检出限为0.13微克/升。  相似文献   

7.
在茶渣上通过化学共沉淀制备环境友好、价格低廉的磁性纳米粒子Fe_3O_4-茶复合物。结果显示,茶渣修饰提高了磁性Fe_3O_4纳米粒子(Fe_3O_4MNPs)在水中的分散性和稳定性,促进了Fe_3O_4MNPs对水中重金属的去除能力;Cu(Ⅱ)和Pb(Ⅱ)的吸附归因于Fe_3O_4-茶复合物中丰富的结合位点(如—OH,—COOH和—NH—)与Cu(Ⅱ)和Pb(Ⅱ)形成稳定的络合物。在pH为7.0,Cu(Ⅱ)、Pb(Ⅱ)初始质量浓度为100mg/L,吸附时间为2h时,Fe_3O_4-茶复合物对Cu(Ⅱ)、Pb(Ⅱ)的吸附率分别为94.58%、94.28%;Cu(Ⅱ)、Pb(Ⅱ)的吸附过程符合准二级动力学方程,Fe_3O_4-茶复合物在连续4次循环再生后,仍表现出较好的吸附能力。利用柱吸附法考察了进液流速对穿透曲线的影响,结果表明:随进液流速增加,穿透点前移,且Cu(Ⅱ)的吸附能力低于Pb(Ⅱ)的吸附能力。  相似文献   

8.
开发活性高和价格低廉的电极材料是溴酸盐(BrO3-)电化学还原技术的关键.贵金属电极因其高活性受到广泛关注,但贵金属储量低且价格昂贵导致其推广应用受限.为此,本研究在不使用粘结剂的情况下,通过直接在高温条件下将磷化泡沫钴原位生长转化为磷化钴,从而制备出磷化钴-泡沫钴自支撑电极(CoP/CF),并将其用于电化学还原BrO...  相似文献   

9.
以Fe(Ⅲ)-酒石酸配合物体系光化学过程中产生的Fe(Ⅱ)和.OH为主要检测对象,探讨了Fe(Ⅲ)-酒石酸配合物体系光化学反应的基本规律及影响因素。结果表明,体系的光化学过程能产生Fe(Ⅱ)和.OH;产生Fe(Ⅱ)的速率远高于产生.OH的速率;Fe(Ⅱ)生成浓度在pH 3.50时最大,.OH则在pH 3.00时最大;配合物的光化学过程中会伴随pH的升高;在照度为3.6×103Lux的日光灯照射下,Fe(Ⅲ)-酒石酸盐配合物初级光解的速率常数为2.1×10-3S-1;Fe(Ⅱ)是高价重金属的主要还原剂,.OH是有机物的主要氧化剂。  相似文献   

10.
建立了在线固相萃取液相色谱串联质谱法测定水中痕量联苯胺的方法。样品经自动进样器注入在线固相萃取小柱后,用富集泵流动相实现对样品的富集洗脱,然后用分析泵流动相将样品从富集柱冲洗至色谱柱后用串联质谱仪进行检测。该方法可在11 min内自动完成对样品的富集、净化、进样和检测过程。当进样量为5 m L时,联苯胺在0.010~2.0μg·L~(-1)范围内具有良好的线性关系,相关系数R为0.999,检出限为0.8 ng·L~(-1),实际水样的回收率为85%~104%。该方法具有简单、快速、重现性好、灵敏高等特点,可用于环境水体中痕量联苯胺的检测。  相似文献   

11.
以H2O2为氧化剂、聚硅硫酸亚铁(PFSSⅡ)为催化絮凝剂,两者耦合形成类Fenton试剂氧化-絮凝处理活性艳红K-2BP废水.当PFSSⅡ的铁硅摩尔比为1∶3,H2O2和PFSSⅡ的投加量分别为10 mg/L和15 mg/L(以Fe2+计)时,活性艳红的脱色率可达到98%以上,且氧化反应速率符合三级反应速率方程.与传...  相似文献   

12.
流动注射-火焰原子吸收法快速测定水样化学需氧量   总被引:1,自引:0,他引:1  
采用流动注射-火焰原子吸收法(FI-FAAS)测定水样化学需氧量.以KMnO4作氧化剂、葡萄糖作基准物质,在95 ℃反应,生成的Mn(Ⅱ)在线分离吸附于阳离子交换树脂微型柱上,用3 mol/L HCl洗脱后,送至火焰原子吸收检测器检测.在反应盘管长500 cm、反应时间30 s的条件下,测定化学需氧量的线性范围为8.00~200.00 mg/L,检出限为2.30 mg/L;采样频率为24次/h,Cl-质量浓度至100 mg/L无干扰,Mg2 质量浓度至1 000 mg/L无干扰;对50.00 mg/L的化学需氧量标样重复测定7次,相对标准偏差为3.37%.用该法测定河水、池塘水和轻度污染工业废水的化学需氧量,获得了与重铬酸盐法(标准方法)基本一致的测定结果.  相似文献   

13.
利用聚醚酰亚胺修饰纳米磁性微球,制备了一种磁性纳米吸附材料,将其作为固相萃取吸附剂用于富集水体中的痕量镉Cd(Ⅱ)离子,并通过等离子电感耦合发射光谱法测定。利用透射电子显微镜(TEM)、傅里叶变换红外光谱(FIIR)和热重分析仪(TGA)对材料进行了表征,并考察了吸附剂对Cd(Ⅱ)离子的吸附性能,研究了溶液pH值、吸附时间、饱和吸附量、干扰离子、洗脱条件等因素对吸附性能的影响。结果表明,当水样的pH值为5时,振荡吸附15 min达到平衡,饱和吸附容量为5.61 mg/g。吸附在磁性纳米材料上的Cd(Ⅱ)离子可用5 m L 1.0 mol/L盐酸溶液完全洗脱,然后用等离子电感耦合发射光谱法测定此洗脱液中Cd(Ⅱ)离子的含量。将该方法用于环境水样中痕量Cd(Ⅱ)离子的吸附富集和测定,加标回收率在95.3%~97.8%之间。  相似文献   

14.
富集培养氨氧化细菌(AOB)可为污水处理工艺提高氨氮氧化速率、促进亚硝酸盐积累提供物质基础。在(20±2)℃下,采用底物流加-间歇运行方式进行氨氧化细菌富集培养,重点考察了游离氨(FA)、游离亚硝酸(FNA)、溶解氧(DO)等因素的影响,并对富集前后活性污泥样品中的AOB进行了定性定量分析。结果表明:第15天左右AOB增殖进入稳定生长期,比氨氮氧化速率由接种时的4.45 mg·(g·h)~(-1)升高至57.22 mg·(g·h)~(-1);通过pH、底物流加速率和实际反应速率关系的联合控制,可以实现整个反应过程中FA和FNA在预期范围内波动;即使在极低的DO条件下,高纯度的AOB也可进行氨氮氧化。高通量测序结果表明,体系内Nitrosomonas属的AOB大幅度增长,可由0.23%上升至54.18%,亚硝酸盐氧化细菌(NOB)的生长得到了有效抑制,培养结束时仅为0.12%。荧光定量PCR对AOB功能基因amoA的绝对含量结果表明,富集前后平均拷贝数由2.67×10~5 copies·g~(-1)升至最大,可达9.67×10~9 copies·g~(-1),AOB成为活性污泥中的优势菌。本研究结果可为常温条件下快速富集AOB提供参考。  相似文献   

15.
为有效去除水体中Mn(Ⅱ)和溶解性有机物(DOM),以聚合硫酸铝铁(PAFS)和聚丙烯酰胺(PAM)-谷胱甘肽(GSH)为原料,成功合成复合混凝剂PAM-GSH-PAFS,对产物结构和组成进行了表征,并对其混凝性能进行了研究。结果表明:PAFS与PAM-GSH发生了化学反应;PAM-GSH-PAFS具有复杂紧密的孔隙结构,有助于产生吸附架桥和网捕卷扫作用,表现出优异的混凝性能。当Mn(Ⅱ)与溶解性有机碳(DOC)均为10.0mg/L,pH为7.0,PAM-GSH-PAFS投加量为5.76mg/L时,Mn(Ⅱ)与DOC去除率分别达到63.5%、82.4%。  相似文献   

16.
采用钴-钛层柱粘土催化剂,向烟气中添加HCl气体进行零价汞的催化脱除实验研究。考察了反应温度及催化剂的焙烧温度、Ti/粘土、活性组分(Co)负载量等制备条件对零价汞催化脱除效果的影响。研究表明,在HCl含量20×10-6的模拟烟气中,焙烧温度为400℃、Ti/粘土为15 mmol/g、Co含量为5 wt%(以CoO计)的钴钛层柱粘土催化剂(Co-Ti-PILCs)在空速为1.0×104 h-1、温度为300℃时零价汞脱除效率为86.7%。  相似文献   

17.
以采自清洁水体的河蚬(Corbicula fluminea)为实验生物,利用生物富集实验测试了河蚬对太湖梅梁湾水源地沉积物中HCHs和DDTs的生物富集.研究结果表明,将河蚬暴露于有机氯农药污染程度相似的太湖梅梁湾沉积物中(HCHs和DDTs浓度分别为1.5-1.8.S/S(以干重计)和1.1-1.7 as/g(以干重计))后,随着暴露时间的延长(24~168h),河蚬对有机氯农药的富集量随着暴露时间逐渐增加.试验结束时各样点中河蚬对HCHs和DDTs的富集量分别为(9.4±2.2)ng/g(以干重计)、(20.7±7.6)ng/g(以干重计).实验水体沉积物中HCHs和DDTs的生物沉积物富集因子(BSAF)分别为1.5±0.1和4.4±0.7.生物-沉积物富集因子(BSAF)与有机物的辛醇-水比值(Kow)存在显著正相关.  相似文献   

18.
以高岭土为负载材料分别用吸附和包埋2种方法固定GY2B优化其降解苯酚的性能。结果显示,采用吸附固定法,高岭土投加浓度为20 g/L时效果最佳,苯酚降解效率相比游离GY2B提升约10%,降解时间由12 h缩短至6 h。包埋法当固定化小球组分投加为高岭土1%(m/v)、聚乙烯醇10%(m/v)、海藻酸钠0.3%(m/v)、GY2B菌悬液10%(v/v)时降解效果最佳,相比游离菌降解效率提升约14%,降解时间缩短至6 h。2种固定方式与游离菌相比均可提升苯酚的降解效果,其中包埋法效果更优,具有更大的适用推广前景。  相似文献   

19.
赤泥作为氧化铝冶炼过程中排出的一般工业固废,具有数量大、碱性强、粒径小、孔隙结构丰富等特征。采用XRF、XRD、SEM/EDX等分析手段,研究了赤泥的化学组成、矿物结构、粒度、比表面积、表面形貌、酸中和能力等特性。通过批实验观测了赤泥对水溶液中Pb(Ⅱ)的去除效果,并对Pb(Ⅱ)初始浓度、pH等影响因子对去除效果的影响展开了分析。结果表明,赤泥的主要化学成分为CaO、SiO_2、Al_2O_3和Fe_2O_3,平均比表面积为43.8 m~2·g~(-1);赤泥有很强的酸中和能力,对硝酸的中和能力约为1.875 mol·kg~(-1)。初始pH=4,且过程中不控制pH时,反应在10 min之内达到平衡,去除率为98%~100%,赤泥对Pb(Ⅱ)的去除能力可达到25.9 mg·g~(-1)。当pH=4时,赤泥对水溶液中Pb(Ⅱ)的去除反应在90~120 min时达到平衡,去除率为10%~45%,当初始浓度为1~100 mg·L~(-1)时,Pb(Ⅱ)初始浓度越高,Pb(Ⅱ)去除能力越强,去除率越低。当pH为7和10时,Pb(Ⅱ)去除率分别为92%和98%,残留Pb(Ⅱ)浓度小于污水综合排放标准中第一类污染物最高允许排放浓度1.0 mg·L~(-1)。通过分析可知,赤泥对Pb(Ⅱ)的去除符合拟二级动力学模型,吸附机理主要为化学吸附。  相似文献   

20.
利用Fe(Ⅱ)EDTA络合吸收-铁粉间歇还原再生脱除NO并回收氨资源的方法,实验研究了铁粉还原再生Fe(Ⅱ)(NO)EDTA的过程及其影响因素。结果表明,以0.015 mol/L的Fe(Ⅱ)EDTA做吸收剂,在起始p H 5.5、温度323K条件下吸收400×10-6~500×10-6的NO,脱除率95%以上;铁粉还原再生Fe(Ⅱ)(NO)EDTA过程可用缩芯模型阐释;铁粉添加量与搅拌强度直接决定了铁粉质点数量,是影响反应的重要因素;实验中Fe(Ⅱ)(NO)EDTA络合液150 m L,氧气含量为5%时,搅拌速度900 r/min、粒径为0.12 mm的铁粉浓度5.3 g/L、温度353 K、p H=6为最适宜再生条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号