首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K. Véliz  M. Edding  F. Tala  I. Gómez 《Marine Biology》2006,149(5):1015-1024
The effects of exposure to ultraviolet radiation (UVR), 280–400 nm, in different life histories and development stages of the kelps, Lessonia nigrescens and L. trabeculata, collected in the south-east Pacific coast (30°S) were evaluated in the laboratory. Germination and viability (motile zoospores, settled spores), diameter of the primary cell of the gametophytes, percentage of female gametophytes, fertility and sporophytes production were measured after exposure to three radiation treatments (PAR; PAR + UVA; PAR + UVA + UVB). The effects of UVR in young sporophytes (diploid stage) were evaluated as changes in maximal quantum yield of chlorophyll fluorescence of photosystem II (PSII) (F v/F m). A significant decrease in all variables was observed for the treatment that included UVB (PAR + UVA + UVB) after 2 and 4 h of exposure, in relation to the control. The motile spores were more sensitive to UVR exposure compared to settled spores and gametophytes, suggesting that along with an increase in ontogenetic development; there is an increase in the tolerance to UVR. In addition, it was observed that early stages of the intertidal L. nigrescens were more tolerant to UVR compared to the subtidal L. trabeculata. These results allow initially to infer that UVR may be regarded as an important environmental factor influencing the upper limit of distribution of these species, mainly through its detrimental effects on the early stages of the life cycle.  相似文献   

2.
Growth as an integrative parameter of all physiological processes was measured in young sporophytes of temperate Laminaria digitata, Laminaria saccharina and Laminaria hyperborea exposed in the laboratory to irradiance consisting of either only photosynthetically active radiation (PAR) or to a spectrum including ultraviolet radiation (UVR) (PAR+UVA+UVB) by use of cut-off glass filters. Size increment was measured every 10 min over a period of 18–21 days using growth chambers with on-line video measuring technique. In the chamber, plants were grown at 10±2°C and 16:8 h light–dark cycles with 6 h additional UVR exposure in the middle of the light period. Tissue morphology and absorption spectra were measured in untreated young sporophytes while chlorophyll a content and DNA damage were measured in treated thalli at the end of the experiment. Sensitivity of growth under UVR was found to be related to the observed upper depth distribution limit of the upper sublittoral L. digitata, upper to mid sublittoral L. saccharina and lower sublittoral L. hyperborea. Tissue DNA damage is, however, dependent on thallus thickness which minimizes UVR effect where outer cell layers shade inner cells and provide longer pathlength for UVR. Exposure to UVR causes cellular, enzymatic and molecular damage. Presence of UV-absorbing compounds further reduces effective UVR from reaching physiological targets. The cost of producing higher amount of UV-absorbing compounds and effective DNA repair mechanism can, however, divert photosynthate at the expense of growth. Tissue chlorophyll a content was not significantly different between treatments suggesting a capacity for acclimation to moderate UVR fluence. Growth acclimation to repeated UVR exposure was observed within a period of 12 days while growth inhibition was observed after a longer UVR exposure period of 21 days. The results give further insight into the effects of UVR on the cellular level and show how ecological parameters such as the upper depth distribution limit are dependent on cellular processes.  相似文献   

3.
We tested the rarely considered hypothesis that the ultraviolet portion (UVR, 280–400 nm) of the light spectrum affects patterns of recruitment in reef-building corals. The premise for this hypothesis rests in the fact that biologically relevant intensities of UVR penetrate to considerable depths (>24 m) in the clear waters surrounding many coral reefs, and that reef organisms allocate substantial resources to prevent and repair UVR damage. The ability of larvae spawned by the brown morph of the Caribbean coral, Porites astreoides, to detect and avoid UVR was assessed in petri dishes where one-half of the dish was shielded from UVR and the other exposed. Observations made every 30 min between 10:30 and 13:30 h showed significantly higher densities of larvae swimming in regions shielded from UVR. To determine how this behavior affects settlement patterns, larvae collected from P. astreoides adults at 18 m depth were released into chambers deployed at 17 m depth where they were given a choice of three different light regions in which to settle: PAR (PAR=400–700 nm), PAR+UVAR (UVAR=320–400 nm), and PAR+UVAR+UVBR (UVBR=280–320 nm). At the end of the experiment, greater numbers of P. astreoides larvae had settled in the region of the tube where UVR was reduced than would be expected if dispersion were random. To our knowledge, this is the first demonstration in any reef-building coral species that planula larvae can detect UVR and that it affects their choice of a settlement site. These results indicate that the capacity to detect and avoid habitats with biologically damaging levels of UVR may be one factor contributing to the successful recruitment of coral larvae.  相似文献   

4.
The effects of temperature on growth rate of rapidly-growing cultured macrosporophytes of 9 isolates of Atlantic Laminaria comprising 4 species have been investigated. No significant population variation was observed within species despite wide variations in temperature between the original collecting sites. L. saccharina showed a broad temperature optimum in the 10°–15°C range, whereas L. longicruris had a sharp optimum at 10°C. L. digitata and L. hyperborea grew more slowly, with only slightly sub-optimal growth over a wide temperature range, but with peaks at 10°C (L. digitata) and 15°C (L. hyperborea). The maximum survival temperatures of individual male and female vegetatively-growing gametophytes were ascertained for these species plus the Arctic L. solidungula, and were as follows: L. saccharina and L. longicruris, 23°C; L. digitata (male), 23°C; L. digitata (female), 22°C; L. hyperborea, 21°C; L. solidungula, 18°C. The lack of within-species differences demonstrates that the success of the genus in areas with different temperature regimes is brought about by phenotypic plasticity of individuals rather than the selection of temperature races or ecotypes.  相似文献   

5.
Long-term effects of artificial ultraviolet radiation (UV) and natural solar radiation on growth and photosynthetic activity, as measured by chlorophyll fluorescence, were investigated in 13 different polar and cold-temperate macroalgal species. Isolates of five different species from the Arctic and Antarctic were exposed to different light treatments of photosynthetically active radiation (PAR), PAR+UVA and PAR+UVA+UVB. Eight different species collected on the island of Helgoland, North Sea, Germany, were studied in the laboratory and under natural solar radiation conditions. Increase in fresh weight and changes in photosynthetic performance were monitored over a period of 3-4 weeks. The sublittoral polar species, particularly the Antarctic red algal species Gymnogongrus antarcticus and G. turquetii, the Arctic cold-temperate brown alga Alaria esculenta and, very drastically, the Arctic-endemic Laminaria solidungula, exhibited strong inhibiting effects of artificial UVB radiation on growth. In the cold-temperate sublittoral growth of the red algae Phycodrys rubens and, to a lesser extend, Membranoptera alata was substantially inhibited by UV radiation. In contrast, eulittoral species, e.g. Fucus serratus, did not show any differences in growth with respect to artificial irradiation conditions, with or without UV radiation. In the laboratory, some individuals of the green alga Codium fragile exhibited strong morphological changes of the whole thallus, particularly under UVB exposure. In the experimental outdoor set up, growth of most of the algal species was already inhibited by the full solar UV waveband, but, apart from Polyides rotundus, no additional UVB effect could be detected. Changes of in vivo fluorescence were not always consistent with the measurable changes in growth rate, indicating that physiological processes leading to an inhibition of growth may act independently of changes in photosynthetic activity. For the polar species, a general correlation between the natural vertical distribution in the field and the individual sensitivity towards UV radiation was indicated, while for eulittoral species from Helgoland no clear relationship was found. The obtained results show that measuring growth is a good ecological parameter to monitor long-term effects of UV radiation on single macroalgal species and the possible resulting changes of whole algal communities in coastal ecosystems.  相似文献   

6.
The effects of natural intensities of ultraviolet A (UVA, 320 to 400 nm) and B (UVB, 280 to 320 nm) radiation on planktonic planula larvae of the reef-building coral Agaricia agaricites (Linnaeus) were investigated through field experiments. Survival, chlorophyll concentrations, and solubilized protein concentrations were determined for larvae spawned from colonies at 3 and 24 m depth and subjected to one of three light regimes at 3, 10, or 24 m depth for 72 h: PAR (photosynthetically active radiation, 40- to 700 nm) only, PAR+UVA, or PAR+UVA+UVB. At 3 m depth, larvae in the PAR+UVA+UVB treatment showed lower survivorship than larvae exposed to either PAR alone or PAR+UVA. Within the PAR+UVA+UVB treatment at 3 m depth, larvae from colonies at 24 m depth suffered higher mortality than those from 3 m. Differences in survivorship between larvae originating from 3 and 24 m depth corresponded with tissue concentrations of UVB-protective mycosporine-like amino acids: larvae from 3 m had higher concentrations of mycosporine-glycine (max=310nm) and palythine (max=320nm) than those from 24 m depth. Chlorophyll concentrations were inversely correlated with PAR intensities, but variation in this parameter did not appear to be detrimental. These results show that sensitivity to high intensities of UVB radiation may affect survival of A. agaricites larvae in shallow reef-waters.  相似文献   

7.
The endangered seagrass Halophila johnsonii Eiseman, exhibits high-light adapted photophysiology consistent with its distribution in intertidal and shallow subtidal (0–3 m) coastal-lagoon habitats along 200 km of southeastern Florida. To examine the short-term responses of this seagrass to three controlled-irradiance treatments (PAR + UVA + UVB [full spectrum], PAR + UVA, and PAR only), greenhouse-acclimated plants were transferred to outdoor mesocosms during July–August 2002. Chlorophyll fluorescence, UV fluorescence, and samples for pigment extraction were collected in the greenhouse, prior to moving the plants outside and on days 1, 2, 3, 4, 6, 10, and 21 of the 24-day experiment. Typical of sun-adapted plants, effective quantum yields measured by pulse-amplitude modulated (PAM) fluorometry were relatively low in all treatments, ranging from 0.46 ± 0.09 (PAR only) to 0.58 ± 0.08 (PAR + UVA + UVB). In the PAR only treatments, there were strong effects on days 1 and 4, presumably because the irradiance in the greenhouse not only lacked all λ<400 nm, but also had low irradiance maxima (∼700 μmol photons m−2 s−1, compared with ∼1,500 μmol photons m−2 s−1 outside at midday). There were few treatment differences between PAR only and PAR + UVA treatments indicating little effect of UVA radiation on this species. Differences in effective quantum yields and relative electron transport rates between the PAR only and PAR + UVA + UVB treatments on day 4 indicated rapid acclimation to UVB radiation. Tissues of H. johnsonii contained compounds that absorbed strongly in the UV, with a λmax at ∼345 nm (depending on the extraction solvent). Absorption peak maxima and minima changed over the course of the experiment but there were no significant light-treatment differences in any pigment parameters. Percent UV shield values, measured using a newly developed UVA PAM fluorometer, were highest the day after plants were transferred from the greenhouse to the outdoor mesocosms and declined significantly to pretreatment levels in all treatments by day 21. Percent UV shield exhibited a significant positive relationship with UV-absorbing pigment (UVP) absorbance, however, the absence of treatment effects suggests that the wavelengths inducing pigment synthesis must lie between 400 and 700 nm (PAR). The results indicate that H. johnsonii rapidly acclimates to high UVB and PAR which may largely explain its distribution in intertidal and shallow subtidal areas.  相似文献   

8.
We demonstrated that environmentally relevant levels of UVA and UVB can reduce sperm motility (UVA: by 38–58%; UVB: by 42–85%; P < 0.05) and subsequently fertilisation success (UVA: by 38–72%; UVB: by 91–98%; P < 0.05) of urchins (Anthocidaris crassispina) in a dose-dependent manner, implicating that recruitment of urchin populations might be reduced by UVR (ultraviolet radiation) prevailing in their natural habitats. Concomitantly, reactive oxygen species (ROS) production was enhanced by UVA and UVB in a dose-dependent manner (UVA: by 1.3-fold; UVB: by 6.6–7.3-fold; P < 0.05), and the increase in ROS resulted in an increase in lipid peroxidation (LPO) in urchin sperm (UVA: by 4.2–7.2-fold; UVB: by 2.3–2.7-fold; P < 0.05). This study demonstrated that ROS production and oxidative damages enhanced by UVR may account for the observed declines in sperm motility and fertilisation, and suggests that levels of UVR prevailing in the environment may pose a significant threat to the reproductive success of natural populations of urchins spawning in shallow waters.  相似文献   

9.
Marine macroalgae inhabiting Arctic coastal ecosystems are exposed to pronounced seasonal variations in the radiation regime, including harmful UVB radiation. This study presents the first data on the seasonal changes in the sensitivity of macroalgal photosynthesis towards UV exposure by comparing under-ice, clear-water and turbid-water conditions characteristic for late winter, spring and summer. Various brown (Laminaria saccharina, L. digitata, L. solidungula, Saccorhiza dermatodea, Desmarestia aculeata), red (Palmaria palmata, Devaleraea ramentacea) and one green macroalgal species (Monostroma aff. arcticum) were collected at the same water depth throughout the seasons in the Kongsfjord (Spitsbergen, Svalbard, Norway). Maximum quantum yield (Fv/Fm) and maximum photosynthetic electron transport rates (ETRmax) were determined immediately after collection, after 2 h exposure to artificial UV radiation and after 18 h recovery in dim white light. Photosynthesis of the studied species showed different responses depending on their morpho-functional and physiological characteristics, their life strategies, phenology and depth distribution. Within the genus Laminaria, maximum quantum yield of adult specimens of the deep-water species L. solidungula was most strongly UV sensitive. Adult L. saccharina exhibited a lower UV sensitivity than a 6-month-old specimen. Inhibition of photosynthesis after UV exposure remained at the same level throughout the study period, both in adult L. saccharina and S. dermatodea. However, adult specimens of L. saccharina collected in May showed partial recovery only, whereas photosynthesis of specimens from both species collected later recovered fully. D. aculeata exhibited a remarkable decrease of UV sensitivity during the study period. Photosynthesis of specimens collected under the ice was strongly inhibited by UV, but the degree of inhibition decreased during spring and summer. Concomitantly ETRmax values were low after UV exposure in specimens collected in June, but increased later in the season. P. palmata exhibited a relatively flexible response. Photosynthesis in specimens collected under the ice in June or in turbid water in July/August was relatively strongly inhibited; specimens collected during sunny periods and in clear water in spring showed a much lower degree of photoinhibition after UV exposure. The seasonal pattern of low/high ETRmax values in spring/summer is probably a characteristic of the life strategy of this species. The UV sensitivity of D. ramentacea exhibited a similar seasonal pattern. In M. aff. arcticum, UV sensitivity increased and ETRmax values decreased during the study period, reflecting the life strategy of this annual late winter/spring species. The physiological basis for the seasonal changes in UV sensitivity of photosynthesis is presented in a companion paper (this issue).  相似文献   

10.
Reports of bathymetric decrease in the total mycosporine-like amino acid (MAA) concentration of benthic invertebrates suggest that light gradients may be important determinants of MAA content. With the pronounced diel light changes, distinct temporal variations in MAA concentrations might also be expected. We examined the changes in the abundance of MAA in three shallow-water scleractinian corals, Pavona divaricata, Galaxea fascicularis and Montipora digitata from Okinawa, Japan, in relation to daily cycles in solar radiation and tested whether the species have different capabilities for protection against UVR depending on their MAA composition. The results show that symbiotic algae freshly isolated from the investigated coral species do not contain MAAs and that distribution of these compounds resided only within the animal tissue. Total MAA content in the tissue of P. divaricata, G. fascicularis and M. digitata rose rapidly at midday and significantly dropped at night. The observed variations were by a factor of two and, thus, very dramatic. For all the investigated coral species, total MAA concentrations were significantly correlated with the diurnal cycle in solar radiation, during both winter and summer seasons. Seawater temperature was significantly correlated with MAA levels only in the June experiment, but represented no more than 20% of the MAA variation in all three coral species, whereas solar radiation explained 60–70% of the MAA fluctuations. This suggests that MAAs are an integral component of the hard corals biochemical defense system against high solar irradiance stress. The diurnal increase in total MAA concentrations was due to an increase in the concentration of imino-MAA species of up to 2–2.5-fold of their pre-dawn values. In contrast, the oxocarbonyl-MAA mycosporine-glycine (Myc-Gly) showed the lowest (Tukey–Kramer HSD test: P<0.05) values at midday, compared to afternoon and night hours. Analysis of diel changes in chlorophyll fluorescence and chlorophyll a content of the investigated species revealed that P. divaricata and G. fascicularis were less sensitive to the high levels of ambient irradiance compared to M. digitata. In P. divaricata and G. fascicularis, Myc-Gly, an MAA with an antioxidant function, is the most abundant MAA, contributing about 70% to the total MAA pool, whereas the major MAA factions in M. digitata were represented by oxidatively robust imino-MAAs. We speculate that MAAs furnish scleractinian corals with protection from biologically damaging ultraviolet radiation through both the direct sunscreening activity of imino-MAAs and the antioxidant properties of oxocarbonyl-MAAs and suggest that the predominance, in the host tissue, of MAA species with an antioxidant ability may render corals more tolerant to high photosynthetically active and ultraviolet radiation.Communicated by T. Ikeda, Hakodate  相似文献   

11.
The depletion of the ozone layer and enhancement of solar radiation may exert an adverse influence on the ecosystem. Phototoxicity of sludge and polycyclic aromatic hydrocarbons (PAHs) under ultraviolet radiation (UVR) to seedling was studied. Seeds of wheat (Triticum aestivum) were planted in sludge and PAHs (anthracene (An), benzo(a)pyrene (BaP) and pyrene (Py)) with and without UVR. Toxicity of sludge increased in the presence of UVR in wheat. UVB radiation was found to be more hazardous than UVA radiation. Results demonstrated that An, BaP and Py induced phototoxicity at various concentrations (1–10?µg/mL) under UVA (1.5?mW/cm2) or UVB (1.08?J/cm2) exposure. The pattern of phototoxicity was An?>?Py?>?BaP to shoot length, root length, and fresh weight; chlorophyll, protein content, enzyme activity of catalase and α-amylase were reduced while the activity of superoxide dismutase and starch was enhanced. Reduction in seedling growth and biochemical parameters may be related to less photosynthesis, less nutritional uptake, and distortion of root cap. Thus, the synergistic effect may be due to alterations in photosynthesis, phytohormones, or nutritional uptake.  相似文献   

12.
Experiments were performed to determine how ultraviolet radiation (UVR) in the environmentally relevant range affects development of the sea urchin Strongylocentrotus droebachiensis (Müller) and whether mycosporine-like amino acids (MAAs), present in the early life stages, reduce UV-induced damage. Eggs, embryos, and larvae contained five MAAs having absorption maxima ranging from 320 to 334 nm. Eggs contained principally shinorine and porphyra-334, which absorb maximally at 334 nm and half-maximally at 312 and 348 nm, spanning much of the environmental range of biologically effective UVR. Concentrations of MAAs remained constant in unirradiated embryos through the gastrula stage, but decreased significantly in two-armed pluteus larvae. Daily exposure to combined photosynthetically active radiation (PAR, 400–700 nm) and UVR did not affect the concentration of MAAs in these embryos up to the two-armed pluteus stage. Prism larvae of sea urchins and the sand dollar Echinarachnius parma (Lamarck) did not accumulate shinorine from the surrounding seawater. Daily exposure of embryos to UVA (320–400 nm) and UVB (295–320 nm) radiation in the presence of PAR induced delays and abnormalities during development, and removing UVB eliminated this effect. Abnormalities in embryos included thickening of the blastoderm wall, filling of the blastocoel by abnormal cells, exogastrulation, and formation of abnormal spicules. The percentage of embryos that developed normally was lower in batches of embryos exposed to PAR + UVA + UVB, except in embryos from urchins maintained on MAA-rich diets. In all cases, the percentage of PAR + UVA + UVB-exposed embryos that developed normally was positively related to the concentration of MAAs in eggs from which the embryos developed. Thus, the MAAs found in S. droebachiensis embryos protect them against UVB-induced abnormalities during their development to at least the four-armed pluteus larval stage. Received: 8 May 2000 / Accepted: 29 September 2000  相似文献   

13.
Large quantities of floating macroalgae are traveling in coastal waters of the SE Pacific and in other temperate climate zones. While afloat, these algae are potentially exposed to full solar radiation, including UVA and UVB, which can have profound effects on their physiological and growth performance. Latitudinal variations in UV-radiation (UVR) are hypothesized to affect floating algae differently with higher impacts at low latitudes than at high latitudes. In addition, UVR together with grazing might accelerate the demise of floating kelps. This hypothesis was tested with outdoor laboratory experiments in which sporophytes of the giant kelp Macrocystis pyrifera (L.) C. Agardh were exposed to a combination of different UVR regimes (PAR only, PAR + UV) and grazing at three sites along the Chilean coast (20°S, 30°S, and 40°S). A latitudinal trend in irradiance was detected with increasing values from 40°S to 20°S. Surprisingly, floating M. pyrifera responded with a high acclimation potential within this latitudinal UVR gradient. At 20°S, floating kelps were slightly sensitive to UVR, which was reflected in reduced blade growth. At 30°S, physiological responses were hardly affected by the prevailing irradiance but sporophyte growth and thus persistence mainly depended on the presence or absence of amphipod grazers. At high latitudes, grazing had only minor impacts on algal biomass and blade growth, and kelps thrived well under all tested environmental conditions. Overall, our results reveal that floating M. pyrifera was only slightly affected by UVR and that sporophytes can efficiently acclimate over a latitudinal UVR gradient that spans from 20°S to 40°S. Given this high acclimation potential, we suggest that these (and possibly other) positively buoyant algae are important dispersal agents over a wide range of temperate latitude conditions.  相似文献   

14.
Reproductive marine algae with complex life histories may respond differently to water motion depending upon whether the spore-producing or gamete-producing phase is considered. Two such species, the kelp Alaria esculenta (L.) Greville (Phaeophyceae) and Ulva lactuca L. (Chlorophyta), were examined experimentally in the laboratory. The kelp was collected in April–June 2000 and U. lactuca was collected in July–August 2000, from four intertidal habitats at Schoodic Point, Maine, USA. Orbital shakers were used to generate water motion. Sporophylls of A. esculenta released more zoospores under shaken versus calm conditions, whereas fewer antheridia on the microscopic male gametophytes released sperm under shaken versus calm conditions when male and female gametophytes were placed together. However, antheridial sperm release was equivalent when male gametophytes were exposed to undiluted media from dense cultures of mature female gametophytes under shaken versus calm conditions. These data suggest that water motion inhibited sperm release by diluting the sperm-releasing pheromone produced by ripe eggs below a threshold required to cause sperm release. Water motion stimulated both gamete and zoospore release from U. lactuca. This is the first report in an alga of stimulation of gamete release by increased water motion, but it is notable that parthenogenesis occurs in Ulva spp.; thus, gametes may develop into gametophytes (1 N) or parthenosporophytes (2 N). This study demonstrates that water motion has strong effects upon algal reproduction, but that the effects may vary between species, possibly due to their different life histories.Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
Dunaliella tertiolecta (Chlorophyta) and Gymnodinium sp. (Dinophyceae) cells were exposed to ultraviolet radiation (UVR) (PAR, UVA and UVB: PAB) for 6 days either continuously or during a photoperiod. Both UVR treatments were harmful to Gymnodinium but exposure to continuous PAB had the most dramatic effects. Although a number of lesions/damage could have happened during the first few hours of exposure to UVR, in less than 24 h, Gymnodinium lost its ability to detoxify ROS efficiently, photoinhibition occurred, thymine dimers formed in the DNA, caspase-like enzymatic activities DEVDase sharply increased and cells died as determined by SYTOX-green staining. Superoxide dismutase activity did not significantly change with time, and although the catalase activity augmented in both treatments, cells still suffered from the UVR stress. Clearly, UVR was fatal to the dinoflagellate. For the chlorophyte, however, cell numbers increased regardless of the UVR treatment and mortality remained low (<20 %). F v/F m showed an initial decrease but then remained constant for both light treatments. After 6 days of continuous PAB exposure, however, signs of stress (thymine dimers, oxidative stress) paralleled a drop in catalase activity. Results obtained here demonstrate that the dinoflagellate Gymnodinium was much more sensitive and was harmed more rapidly by UVR exposure than the chlorophyte D. tertiolecta. The increased tolerance to UVR exposure of the chlorophyte may provide advantages over other more sensitive phytoplankton species within the photic zone. We provide strong support in the present study for repair being an important component of UV resistance in this species.  相似文献   

16.
Hybridization experiments between seven north and south Atlantic Laminaria species were carried out. Morphologically normal F1 sporophytes developed from the following crosses among south Atlantic species: L. pallida x L. schinzii, L. pallida x L. abyssalis and L. schinzii x L. abyssalis. Normal F1 sporophytes also resulted from the crosses L. digitata (north Atlantic) x L. pallida (south Atlantic) and L. digitata (north Atlantic) x L. abyssalis (south Atlantic). Hybrids between north Atlantic L. ochroleuca and south Atlantic L. pallida, L. schinzii and L. abyssalis and between north Atlantic L. digitata and south Atlantic L. schinzii initially developed as normal sporophytes but became deformed later on and further development was retarded. No hybrids resulted from attempted crosses between northeastern Atlantic L. saccharina and L. abyssalis from Brazil. Temperature tolerance, relative growth rates and temperature demands for gametogenesis revealed the existence of a warm temperate group within the digitate Laminaria species consisting of L. ochroleuca, L. pallida, L. schinzii and L. abyssalis. Hybridization experiments and temperature responses suggest that north Atlantic L. digitata and L. ochroleuca are still similar to south Atlantic Laminaria species, confirming the speculation that a transequatorial migration of a warm-temperate L. ochroleuca-like ancestor may have taken place.  相似文献   

17.
One of the consequences of ultraviolet radiation exposure in anthozoans possessing photosynthetic endosymbionts (i.e., zooxanthellae) is production of reactive oxygen species that can damage cellular components, especially lipids and photosynthetic membranes. It is well known that carotenoids are potent antioxidants that can mitigate oxygen radical damage, but the origin of these compounds in zooxanthellate anthozoans is obscured because they can potentially originate from endosymbionts, heterotrophic feeding by the host, or a combination thereof. We used Aiptasia pallida, a common Caribbean anemone, to investigate the effects of exogenous food sources, ultraviolet-A radiation (UVA, 320–400 nm), and photosynthetically active radiation (PAR, 400–700 nm) on carotenoid levels in zooxanthellate anthozoans. Anemones were exposed to one of three simulated light treatments in the laboratory for 38 days: PAR (60% below ambient)/UVA (similar to ambient), PAR/low UVA (42% below ambient), and low PAR (98.4% below ambient)/no UVA. In addition, anemones were either fed a carotenoid-rich diet of Artemia salina nauplii, or starved. Carotenoids identified in A. pallida included peridinin, diadinoxanthin, diatoxanthin and -carotene. While a diet of Ar. salina nauplii had no effect on the carotenoid composition of A. pallida, a two-way analysis of variance revealed that anemones exposed to ambient UVA levels had significantly greater diatoxanthin concentrations relative to the total xanthophyll pool [diato:(diato+diadino)] after 10 days of exposure. This difference among treatments was not present at 20 days, but reappeared as an effect due to starvation rather than UVA at days 30 and 38. These results suggest that carotenoids in A. pallida are not influenced by exogenous feeding and that photoprotective xanthophyll cycling is sensitive to stresses such as UVA and starvation.Communicated by P.W. Sammarco, Chauvin  相似文献   

18.
Effects of ambient ultraviolet light on the survivorship of eggs and planulae larvae was investigated for three species of broadcast-spawning reef corals, Acropora palmata, Montastraea annularis, and M. franksi. Eggs and larvae from these corals contain high concentrations of lipids (60–70% by weight) and float in surface waters for 3–4 days following spawning. Larvae originating from colonies living at deeper sites on the reef exhibited significantly lower survivorship than conspecifics originating from parents in shallow water when experimentally exposed for up to 4 days to ambient surface levels of ultraviolet radiation (UVR). Concentrations of the UVR-protective compounds correlated positively with survival and matched concentrations found in parent colonies, implying that higher concentrations of ultraviolet B protective compounds are responsible for greater survival of eggs and larvae from shallow compared to deeper-dwelling parents. Ultraviolet B appears to be responsible for most of the observed differences in larval survivorship with ultraviolet A playing a minor or insignificant role. Data presented here indicate that coral recruits on Caribbean reefs and elsewhere may originate primarily from adult colonies dwelling in shallow water.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
Bleaching (visible loss of symbiont color) in populations of the diatom-bearing foraminifer Amphistegina has been recorded from reefs worldwide since 1991. Field studies and previous laboratory experiments have strongly implicated solar radiation as a factor in bleaching stress. The influence of spectral quality and quantity of photosynthetically active radiation (PAR) and ultraviolet radiation (UV) on growth rates and bleaching in Amphistegina gibbosa was investigated in the laboratory using fluorescent sources of PAR (blue with a spectral peak at 450 nm and white with a 600-nm spectral peak) and biologically effective ultraviolet radiation [UVB (280–320 nm)]. Growth rate, as indicated by increase in maximum shell diameter, saturated at a PAR of 6–8 mol photon m–2 s–1, increased in blue light, and was not influenced by UVB0.0162 W m–2. Frequency of bleaching increased with increasing PAR photon flux density and with exposure to shorter wavelengths, with or without an increase in total energy. Growth was significantly inhibited by UVB at 0.105 W m–2. Specimens in treatments exposed to UVB to PAR ratios >0.003 became dark in color, rather than bleaching, which previous cytological studies indicate is a photo-protective response. Implications of these experiments are that environmental factors that affect either the spectral quality or quantity of solar radiation can influence bleaching in Amphistegina.Communicated by P.W. Sammarco, Chauvin
Dana E. WilliamsEmail: Phone: +1-305- 3614569Fax: +1-305-3614499
  相似文献   

20.
Photosynthetic performance in the kelp Laminaria solidungula J. Agardh was examined from photosynthesis irradiance (P-I) parameters calculated from in situ 14C uptake experiments, using whole plants in the Stefansson Sound Boulder Patch, Alaskan Beaufort Sea, in August 1986. Rates of carbon fixation were determined from meristematic, basal blade, and second blade tissue in young and adult sporophytes. Differences in saturating irradiance (I k, measured as photosynthetically active radiation, PAR), photosynthetic capacity (P max), and relative quantum efficiency () were observed both between young and adult plants and between different tissue types. I k was lowest in meristematic tissue (20 to 30 E m–2 s–1) for both young and adult plants, but consistently 8 to 10 E m–2 s–1 higher in young plants compared to adults in all three tissues. Average I k for non-meristematic tissue in adult plants was 38 E m–2 s–1. Under saturating irradiances, young and adult plants exhibited similar rates of carbon fixation on an area basis, but under light limitation, fixation rates were highest in adult plants for all tissues. P max was generally highest in the basal blade and lowest in meristematic tissue. Photosynthetic efficiency () ranged between 0.016 and 0.027 mol C cm–2 h–1/E m–2 s–1, and was highest in meristematic tissue. The relatively lower I k and higher exhibited by L. solidungula in comparison to other kelp species are distinct adaptations to the near absence of light during the eight-month ice-covered period and in summer when water turbidity is high. Continuous measurement of in situ quantum irradiance made in summer showed that maximum PAR can be less than 12 E m–2 s–1 for several days when high wind velocities increase water turbulence and decrease water transparency.The Univeristy of Texas Marine Science Institute Contribution No. 695  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号