首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
M Howsam  K C Jones  P Ineson 《Chemosphere》2001,44(2):155-164
Leaves from three species of deciduous tree (oak, ash and hazel) were sampled at intervals through a growing season in a mature, mixed-deciduous woodland. Polycyclic aromatic hydrocarbon (PAH) concentrations remained within a small range for all species between May and September, deviating significantly only when increases in atmospheric concentrations of PAHs (notably from the 'Bonfire night' festival in early autumn) have been shown. We concluded that the influence of air concentrations was more important than meteorological conditions (temperature, humidity and rainfall) in determining plant concentrations of PAHs over a growing season. Concentrations of 4-, 5- and 6-ring PAHs were positively correlated with time for all species, but there were significant differences in the PAH profile between species sampled from the canopy (oak and ash) compared with the understorey (hazel). Oak and ash had similar PAH profiles, while hazel leaves had proportionally greater concentrations of the heavier molecular weight (4-, 5- and 6-ring) PAHs, and the ratios of these compounds to 3-ring PAHs was positively correlated with time. This affirms earlier work conducted on the same species in the same woodland, where we concluded that the canopy was filtering particles and attendant PAHs from air passing over or through it, and that these particles were transferred to the understorey and the woodland floor.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.  相似文献   

3.
Kuo YM  Lin TC  Tsai PJ  Lee WJ  Lin HY 《Chemosphere》2003,51(4):313-319
Fate of polycyclic aromatic hydrocarbons (PAHs) during the vitrification of fly ash and bottom ash from the municipal waste incinerator in a coke bed furnace was investigated. In this system, both coke and lime were added to enhance the melting reaction. The major PAH sources in this system were ash and coke, which respectively contributed 97% and 3% of PAHs in the input-mass. During vitrification process, low molecular PAHs (LM-PAH, 2-3-ring), median molecular PAHs (MM-PAH, 4-ring) and high molecular PAHs (HM-PAH, 5-7-ring) mass respectively accounted for >99%, >99% and 84% of the output-mass emitted as the stack flue gas; while those discharged from the slag were <1%, <1% and 16%, respectively. The O/I (output-mass/input-mass) ratio of LM-, MM- and HM-PAHs were 0.063, 0.002 and <0.001, respectively. The high distribution in flue gas and O/I ratio of LM-PAHs is reasonable since they are more easily evaporated, hence difficult to be removed by air pollution control devices. On the contrary, the HM-PAHs, having lower vapor pressure, primarily stays mainly in slag. Based on the 21 total PAH content in feeding ash and slag, the reduction efficiency of the coke bed furnace was >99.9%. To minimize the risk of secondary pollution, the efficiency of coke bed furnace should be improved to reduce the PAH emission into ambient air.  相似文献   

4.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

5.
Lability of polycyclic aromatic hydrocarbons in the rhizosphere   总被引:2,自引:0,他引:2  
Cofield N  Banks MK  Schwab AP 《Chemosphere》2008,70(9):1644-1652
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.  相似文献   

6.
The role of resuspension duration on release of 16 PAHs was measured experimentally using a particle entrainment simulator (PES). Three sediment cores were resuspended for 12h at 0.2 and 0.5N m(-2). PAHs in water column and total suspended solids (TSS) were monitored at intervals. After 0.25h of resuspension, PAH release was on average 42% of their concentrations after 12h of resuspension, indicating fast release of PAHs from sediments in an initial short time. Moreover, PAHs released faster at 0.5N m(-2) than at 0.2N m(-2); low molecular weight PAHs (2-3-ring) released faster than median molecular weight (4-ring) PAHs. PAH concentrations in TSS showed generally increase with time and differences in magnitudes based on sediment type and energy. Overall, the composition of sediments is the major factor in determining the amount of released PAHs, more so than the level of resuspension energy applied.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.  相似文献   

8.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

9.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

10.
Temporal variations of polycyclic aromatic hydrocarbon (PAH) concentrations in leaves of a Mediterranean evergreen oak, Quercus ilex L., were investigated in order to assess the suitability of this species to biomonitor PAH air contamination. Leaf samples were collected at six sites of the urban area of Naples (Italy) and at a control site in the Vesuvius National Park, in May and September 2001, and in January and May 2002. PAH extraction was conducted by sonication in dichloromethane-acetone and quantification by GC-MS. In winter, leaf total PAH concentrations showed, at all the urban sites, values 2-fold higher than in all the other samplings, reflecting the temporal trend reported for PAH air contamination in the Naples urban area. Moreover, leaf PAH concentrations showed, at all the urban sites, a decrease in May 2002 after the winter accumulation. At the control site leaf PAH concentrations showed lower values and smaller temporal variations than at the urban sites. The findings support the suitability of Q. ilex leaves to monitor temporal variations in PAH contamination. The highest winter concentrations of total PAHs were due to the medium molecular weight PAHs that increased with respect to both low and high molecular weight PAHs. The medium molecular weight PAHs showed the same temporal trend both at the urban and remote sites.  相似文献   

11.
Persistent organic pollutants (PAHs and PCBs) in soil samples from seven sites across the Seine basin were analysed. Samples were taken from industrialized, urban, suburban and remote sites. Results showed spatial differences, in terms of concentrations and congener profiles. PAH (Sigma14 PAHs) and PCB (Sigma 7 PCBs) concentrations ranged from 450 to 5650 microg kg(-1) and 0.09 to 150 microg kg(-1), respectively. A clear gradient from industrial to remote sites was highlighted, with a ratio of up to one order of magnitude for PAHs and two orders of magnitude for PCBs. Fluoranthene and pyrene were predominant, while the carcinogenic PAHs represented 15-46% of the total PAH content. Using hierarchical cluster analysis, soil samples profiles were compared and the influence of site location and potential sources were identified: automobile traffic, domestic heating, and industrial emissions were the prevalent PAHs sources in the Seine basin. PCB profiles suggested different transport patterns among congeners. For remote sites, the congener fingerprint showed a relatively higher proportion of the most volatile congeners, which were attributed to increased atmospheric residence times. Thus, PAH and PCB distributions in soils provided information on sources and evidence for short-range transport, and profiles of compounds reflected differences between regional and local emissions. This study demonstrates that soil sampling can be used to investigate spatial differences in atmospheric inputs of persistent organic pollutants based on differences in the mixtures of compounds, reflecting differences in regional and local atmospheric emissions.  相似文献   

12.
Lors C  Ryngaert A  Périé F  Diels L  Damidot D 《Chemosphere》2010,81(10):1263-1271
The monitoring of a windrow treatment applied to soil contaminated by mostly 2-, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 16S rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82% respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma-proteobacteria, in particular, the Enterobacteria and Pseudomonas genera, which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely, other species, like the Beta-proteobacteria, were detected after 3months, when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus, presence of the Beta-proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH-contaminated soil.  相似文献   

13.
Zhou HC  Zhong ZP  Jin BS  Huang YJ  Xiao R 《Chemosphere》2005,59(6):861-869
This paper presents the incineration tests of municipal solid waste (MSW) in a fluidized bed and the adsorption of activated carbon (AC) on polycyclic aromatic hydrocarbons (PAHs). An extraction and high performance liquid chromatography (HPLC) technique was used to analyze the concentrations of the 16 US EPA specified PAHs contained in raw MSW, flue gas, fly ash, and bottom ash. The aim of this work was to decide the influence of AC on the distribution of PAHs during the incineration of MSW. Experimental researches show that there were a few PAHs in MSW and bottom ash. With the increase of AC feeding rate, the concentrations of three- to six-ring PAHs in fly ash increased, and the concentration of two-ring PAH decreased. The total-PAHs in flue gas were dominated by three-, and four-ring PAHs, but a few two-, five-ring PAHs and no six-ring PAHs were found. PAHs could be removed effectively from flue gas by using in-duct AC injection and the removal efficiencies of PAHs were about 76-91%. In addition, the total toxic equivalent (TEQ) concentrations of PAH in raw MSW, bottom ash, fly ash, and flue gas were 1.24 mg TEQ kg-1, 0.25 mg TEQ kg-1, 6.89-9.67 mg TEQ kg-1, and 0.36-1.50 microg TEQ Nm-3, respectively.  相似文献   

14.
Zhu L  Wang J 《Chemosphere》2003,50(5):611-618
Twelve polycyclic aromatic hydrocarbons, multi-ringed compounds known to be carcinogenic in air of six domestic kitchens and four commercial kitchens of China were measured in 1999-2000. The mean concentration of total PAHs in commercial kitchens was 17 microg/m3, consisting mainly of 3- and 4-ring PAHs, and 7.6 microg/m3 in domestic kitchens, where 2- and 3-ring PAHs were predominant, especially naphthalene. The BaP levels in domestic kitchens were 0.0061-0.024 microg/m3 and 0.15- 0.44 microg/m3 in commercial kitchens. Conventional Chinese cooking methods were responsible for such heavy PAHs pollution. The comparative study for PAH levels in air during three different cooking practices: boiling, broiling and frying were conducted. It was found that boiling produced the least levels of PAHs. For fish, a low-fat food, frying it produced a larger amount of PAHs compared to broiling practice, except pyrene and anthracene. In commercial kitchens, PAHs came from two sources, cooking practice and oil-fumes, however the cooking practice had a more predominant contribution to PAHs in commercial kitchen air. In domestic kitchens, except for cooking practice and oil-fumes, there were other PAHs sources, such as smoking and other human activities in the domestic houses, where 3-4 ring PAHs mainly came from cooking practice. Naphthalene (NA, 2-ring PAHs) was the most predominant kind, mostly resulting from the evaporation of mothball containing a large quantity of NA, used to prevent clothes against moth. A fingerprint of oil-fumes was the abundance of 3-ring PAHs. Heating at the same temperature, the PAHs concentrations in different oil-fumes were lard > soybean oil > rape-seed oil. An increase in cooking temperature increased the levels of PAHs, especially acenaphthene.  相似文献   

15.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

16.
Ambient air samples from a traffic intersection, an urban site and a petrochemical-industrial site (PCI) were collected by using several dry deposition plates, two Microorifice uniform deposited impactors (MOUDIs), one Noll Rotary Impactor (NRI) and several PS-1 (General Metal Work) samplers from March 1994 to June 1995 in southern Taiwan, to characterize the atmospheric particle-bound PAH content of these three areas. Twenty-one individual polycyclic aromatic hydrocarbons (PAHs) were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). In general, the sub-micron particles have a higher PAH content. This is due to the fact that soot from combustion sources consists primarily of fine particles and has a high PAH content. In addition, a smaller particle has a higher specific surface area and therefore may contain more organic carbon, which allows for more PAH adsorption. For a particle size range between 0.31 and 3.2 microm, both Urban/Traffic and PCI/Traffic ratios of particle-bound total-PAH content have the lowest values, ranging from 0.25 to 0.28 (mean = 0.26) and from 0.07 to 0.13 (mean = 0.10), respectively. This indicates that, during the accumulation process, the PAH mass shifted from a particle phase to a gas phase, or the particles aggregated with lower PAH-content particles, resulting in a reduction in particle-bound PAH content. By using the particle size distribution data, the dry deposition model in this study can provide a good prediction for the PAH content of dry deposition materials. In general, lower molecular weight PAHs had a larger fraction of dry deposition flux contributed by the gas phase; for 2-ring PAH (50.4, 46.3 and 28.4%), 3-ring PAHs (15.2, 15.4 and 11.7%) and 4-ring PAHs (13.0, 3.60 and 5.01%) for the traffic intersection, urban and PCI sites, respectively. For higher molecular weight PAHs-5-ring, 6-ring and 7-ring PAHs-their cumulation fraction (F%) of dry deposition flux contributed by the gas phase was lower than 3.26%. At the traffic intersection, urban and PCI sites, the mass median diameter of dry deposition materials (MMD(F)) of individual PAHs was between 25.3 and 49.6 microm, between 27.6 and 43.9 microm, and between 19.1 and 41.9 microm, respectively. This is due to the fact that PAH dry-deposition primarily resulted from gravitational settling of the coarse particulates (> 10 microm).  相似文献   

17.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

18.
Yu XZ  Gao Y  Wu SC  Zhang HB  Cheung KC  Wong MH 《Chemosphere》2006,65(9):1500-1509
The concentration, distribution, profile and possible source of polycyclic aromatic hydrocarbons (PAHs) in soil were studied in Guiyu, an electronic waste (E-waste) recycling center, using primitive technologies in Southeast China. Sixteen USEPA priority PAHs were analyzed in 49 soil samples (0-10 cm layer) in terms of individual and total concentrations, together with soil organic matter (SOM) concentrations. The concentrations of a sum of 16 PAHs ranged from 44.8 to 3206 microgkg(-1) (dry weight basis), in the descending order of E-waste open burning sites (2065 microgkg(-1))>areas near burning sites (851microgkg(-1))>rice fields (354 microgkg(-1))>reservoir areas (125microgkg(-1)). The dominant PAHs were naphthalene, phenanthrene and fluoranthene, which were mainly derived from incomplete combustion of E-waste (e.g. wire insulations and PVC materials), and partly from coal combustion and motorcycle exhausts. All individual and total PAH concentrations were significantly correlated with SOM except for naphthalene and acenaphthylene. Principal component analysis was performed, which indicated that PAHs were mainly distributed into three groups in accordance with their ring numbers and biological and anthropogenic source. In conclusion, PAH concentrations in the Guiyu soil were affected by the primitive E-waste recycling activities.  相似文献   

19.
A novel multivariate method based on principal component analysis of pre-processed sections of chromatograms is used to characterize the complex PAH pollution patterns in sediments from Guanabara Bay, Brazil. Five distinct sources of 3- to 6-ring PAHs could be revealed. The harbour is the most contaminated site in the bay, its plume stretches in a South West to North East direction and the chemical profile indicates mainly pyrogenic sources mixed with a fraction of high-molecular-weight petrogenic PAHs. Rio São João de Meriti is the second largest source of PAHs, and introduces mainly a fraction of low-molecular-weight petrogenic PAHs from the western region of Rio de Janeiro. The sites close to the ruptured pipeline at the Duque de Caxias Refinery show a distinctive pollution pattern indicating a heavy petroleum fraction. The method also led to the identification of new potential indicator ratios also involving coeluting peaks (e.g., triphenylene and chrysene).  相似文献   

20.
Sequential supercritical fluid extraction (SFE) was performed in order to estimate desorption of PAHs from river floodplain soils which contain coal and coal-derived particles. Original soils, soils' light fractions (ρ < 2 g cm−3), and <63 μm fractions were studied for PAHs' desorption kinetics. Desorption data were successfully described using a two-site model. Desorption rate constants were one order of magnitude lower than those of “slow” and “very slow” desorption rates from other studies. This suggests very slow and extremely slow desorption. Estimated time scales releasing 99% of total extractable contaminants ranged from decades for 2-4-ring PAHs and hundreds of years for 5-6-ring PAHs. We demonstrate that, despite high soil PAH concentrations which are due to coal and coal-derived particles, the general environmental risk is reduced by the very slow and extremely slow desorption rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号