首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of periwinkle shell (PS) in enhancing the microbial break down of crude oil spilled in soil were studied. The results revealed that the counts of crude oil degrading bacteria in oil-polluted soil fortified with PS were higher than the counts in unfortified soil. The rates and total extent of crude oil biodegradation in the soil were stimulated by the amendment. About 43.4 percent of crude oil was degraded in unfortified soil after 16 days as compared to 70.1 percent oil biodegradation, which occurred in PS fortified soil during the same period. These values were significantly (P>0.05) different from each other. Amendment of the soil with PS also raised the pH of the soil from acidic to alkaline range. The crude oil degrading microorganisms identified in PS amended soil were of the genus Pseudomonas, Bacillus, Micrococcus, Acinetobacter, Penicillium, Aspergillus, Mucor and Rhizopus. Similarly, Pseudomonas, Bacillus, Micrococcus, Mucor, Aspergillus and Penicillium were identified as crude oil degrading microorganisms in unamended soil. The bacteria formed either stable or unstable emulsions, suggesting that the organisms produce surface-active agents (biosurfactants) during the biodegradation process. The results of this study indicate that PS can be used in reclaiming oil-polluted soil.  相似文献   

2.
The effect of spent engine oil on the height, leaf number, leaf area, stem girth, chlorophyll, and moisture contents of Corchorus olitorius grown on 0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, and 3.0% (v/w oil/soil) oil-contaminated soil was investigated. The engine oil at all concentrations delayed the germination of C. olitorius by 2 days (compared to control) and there was a general significant reduction in all the growth parameters in plants grown on contaminated soil compared to control plants. The highest leaf area of 26.8 cm2 was found in the control plant and least was found in the 0.6% soil (0.11 cm2) after 3 weeks while no values were recorded on the 0.8–3.0% engine-oil-contaminated soil after 5 weeks of experiment. The highest chlorophyll content was also found in the control plant (11.5 mg/l). This showed that spent engine oil has an adverse effect on the growth of C. olitorius plant.  相似文献   

3.
The susceptibility of Amaranthus hybridus L. seedlings to spent engine oil was investigated in soil supplemented with concentrations of oil ranging from 1–5 percent v/w. Parameters considered were relative growth rate (RGR), leaf area ratio (LAR), whole plant height, leaf area, leaf number, chlorophyll and protein levels. A relationship was found to exist between the inhibitory effects and the treatment concentrations. After seventy days growth in the treated soils, the mean height and leaf area of plants in soils treated with 5 percent spent engine oil were 27.0±1.25 cm and 5.63±0.36 cm2. These were significantly different (at p=0.05) from the respective values of 41.4±0.8 cm and 13.44±0.22 cm2 for the control plants. Levels of total chlorophyll (per gram fresh weight of leaves) and protein (per gram dry weight of whole plant) were higher in the control plants compared with those grown in oil treated soil. Results obtained from the growth analysis showed the inhibitory effects of spent engine oil on Amaranthus hybridus L.  相似文献   

4.
In order to improve the oil recovery, injection of exogenous bacteria into the oil reservoir is one of the most widely used microbial flooding methods. In this study, a screened strain of Bacillus subtilis (B. subtilis) was introduced to perform the microbial flooding. The biosurfactants produced by B. subtilis was one kind of cyclic lipopeptides, which could reduce the surface tension of the culture solution from 68 mN/m to 25 mN/m and also decrease the interfacial tension of water/oil from 25.6 to 4.6 mN/m. Emulsification tests indicated that the strain and the biosurfactants could degrade and emulsify the crude oil. In the oil displacement experiments, oil recovery was increased by 32.4% by injecting fermentation broth into the simulated formation. By respectively performing the emulsification and oil displacement tests, it was demonstrated that the biosurfactants and degradation of the microbes in the heavy components of the crude oil are the main factors to enhance the oil recovery. Besides, the optimal cultural temperature for strain of B. subtilis was set as 40°C. Nevertheless, the strain was inappropriate for the oil displacement under acidic conditions. In addition, the hydrophilic sands and an optimal culture solution volume of 0.7 pore volume (PV) would be in favor of the oil recovery. It was further confirmed that the efficiency of microbial flooding was much higher than that of the chemical oil displacement.  相似文献   

5.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

6.
Summary The effect of crude oil contaminated soil at various sublethal concentrations (0.25%, 0.5%, 1.0% and 2.0%) on the growth and metabolism of cowpea (Vigna unguiculata) seedlings was studied. The results showed that crude oil induced environmental stress in the seedlings. This is indicated by the increase in free sugar, total protein and amino acids and a decrease in chlorophyll contents of the leaves of 12-day-old seedlings. The activities of total amylase and starch phosphorylase from the cotyledon and mitotic activity of the meristems of the root of 4-day-old seedling were inhibited by the various concentrations except at 0.5%, which showed stimulation of cellular and metabolic activities relative to seedlings in the control treatment.  相似文献   

7.
The effect of exposure to crude oil contaminated diet on the blood antioxidant defence system, lipid peroxidation, lipid profile as well as possible protective roles of vitamins E and C were studied in rabbits. Oxidative stress induction by crude oil was indicated by significantly (P < 0.05) increased lipid peroxidation and a non-significant (P < 0.05) decrease in superoxide dismutase and catalase activities. A similar pattern was also detected in the lipid profile: total cholesterol and LDL-cholesterol insignificantly (P < 0.05) increased while HDL-cholesterol and triglyceride significantly decreased relative to rabbits fed normal diet. The reciprocal relationship between HDL-cholesterol and LDL-cholesterol in addition to compromised antioxidant enzymes could predispose exposed animals to coronary heart disease. However, pre-treatment of the diet with vitamins C and E exhibited a protective role on the toxic effect of crude oil on lipid profile, lipid peroxidation as well as antioxidant enzymes. The order of protection was vitamin E + C > vitamin E > vitamin C. These observations seemed to suggest that the protective role of vitamins C and E is synergistic. The protective role of the vitamins is probably time-dependent as significant (P < 0.05) restoration of lipid profile as well as antioxidant enzymes activities to control values was effected after four weeks of exposure. It is therefore suggested that toxic effect of crude oil may be reduced by dietary supplementation of vitamins C and E.  相似文献   

8.
Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.  相似文献   

9.
Fresh whole plants of Pistia stratiotes were exposed to varying doses of crude oil (0–100 ppm) for 28 days at normal temperature of 30 ± 2°C. Samples were taken weekly during this period for determination of changes in leaf area, root length, number of leaves, and number of sprouts. The cross-section of one terminal end of the major roots and cellular distribution of the meristematic region were also examined. The results show that crude oil was toxic to the plant at all concentrations in all investigated parameters for as low as 10 ppm. Association was also observed between crude oil toxicity and certain metals inherent in the crude oil such as manganese and lead. Cell shape disruptions, changes in mitotic indices, and the distortion of cellular anatomy and structure at the apical region also characterized the presence of crude oil in the environment of P. stratiotes. P. stratiotes may not be a good bio-accumulator of crude oil but may be used for the detection of pollution.  相似文献   

10.
The reestablisment of autochthonous plant species is an essential strategy for recovering degraded areas under semiarid conditions. A field experiment was carried out to assess the short-term effect of two reafforestation methods involving mycorrhizal inoculation and compost addition on soil quality parameters and Rhamnus lycioides seedling growth. The nutrient content (NPK) and enzymatic activities (dehydrogenase, urease, protease-BAA, acid phosphatase and β-glucosidase) increased and bulk density decreased in the rhizosphere soil with the organic amendment. Biomass C of rhizosphere soil increased by at least 240% with respect to the control soil after mycorrhizal inoculation and the combination of compost addition + mycorrhizal inoculation. Both mycorrhizal inoculation and composted organic residue addition increased R. lycioides seedling growth in the same proportion. In the short term, we conclude that the application of both reafforestation methods not only enhances the establishment of R. lycioides seedlings, but also improves soil quality.  相似文献   

11.
A greenhouse trial was conducted to investigate the role of mycorrhizal and resistant fungi on heavy metal phytoextraction from different concentrations of tannery solid waste amended soil (10, 20, 50, and 100%) by Tagetes patula. The four treatments included were, the control (C) without any inoculum, mycorrhizal (M) inoculated with strongly mycorrhizal roots of Cynodon dactylon, fungal (F) inoculated with Trichoderma pseudokoningii and the combined inoculation with both mycorrhizal and fungal inocula (M + F). The dual inoculation increased plant biomass and phytoextraction ability of plant for metals like Cd, Cr, Cu, and Na. Plants given only fungus (F) and only mycorrhizal (M) treatment also showed significant growth rate as compared with control treatment. The statistical analysis of data indicated synergistic interaction between mycorrhizal and fungal inoculum promoting high biomass and enhanced metal phytoextraction. Thus using more than one group of rhizosphere fungi in association with a high biomass producing plant may be employed for rendering tannery solid waste free of metals.  相似文献   

12.
Stomatal behavior, growth performance and the accumulation of polynuclear aromatic hydrocarbons (PAHs) were evaluated in seedlings of the mangrove Avicennia marina (Forssk.) Vierh., treated with a water-soluble fraction (WSF) of Abu-Dhabi light Arabian crude oil through foliar spraying or soil application.Irregular stomatal behavior and weak stomatal control over transpiration were observed during the first 24 hours, where stomatal resistances of plants sprayed with 150 and 300 g PAHs plant–1 were significantly lower than that of the control plants. After six weeks, all treated plants showed no significant difference in their relative growth rate (RGR) or in the net assimilation rate (NAR) compared with the control plants.Tri-aromatic hydrocarbons were the most accumulated in tissues of the treated plants. Penta- and hexa-aromatics, on the other hand, were undetectable in the WSF and consequently in the treated plants. A linear relationship was observed between the dose applied to plants and the amounts of tissue accumulated PAHs (r 2=0.515 for soil application and r 2=0.984 for foliar spray). In plants sprayed with 300 g PAHs plant–1, the total PAHs accumulated were more than that accumulated in plants treated through soil application.These findings suggest that: aqueous extraction of crude oil tends to signify the percentage of the low molecular weight PAHs, e.g. naphthalene, to the total PAHs; disturbed stomatal behavior in the first day of the treatment may be due to the venting of the volatile low molecular weight aromatic hydrocarbons (e.g. benzene, toluene, and xylenes) through the stomata; and uptake of water-soluble hydrocarbons by plants is equally possible through both of the root system and the foliage. The ecological implications of these finding are discussed in relation to oil pollution of mangrove stands under field conditions.  相似文献   

13.
Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat conditions in a mosaic of patches of well-established grassed areas and bare, nonvegetated areas. Factors, including soil CO2, CH4, O2, nutrients, and other general soil conditions, were measured in relation to species distribution and grass biomass in the field. Cynodon dactylon was the dominant grass in the established grass areas but was less abundant in the areas bordering the bare areas where Paspalum paspalodes and Sporobolus africanus were common. A number of soil factors measured were significantly correlated with grass biomass and these included Mg, Ca, Zn, Mn, K, temperature, moisture, and CO2. However, a laboratory bioassay using the growth of C. dactylon with soils removed from the landfill indicated that there were no differences in the soils from the bare areas and those that supported high plant biomass. Thus, no nutrient deficiency or chemical toxicity was inherent in the soil in the laboratory. The results of the field investigation and bioassay indicated that soil CO2 as a result of landfill gas infiltration into the root zone was probably the main factor causing bare areas on the landfill where no grass species could colonize and grow and that C. dactylon was more sensitive to elevated soil CO2 than other grass species such as P. paspalodes and S. africanus.  相似文献   

14.
Phosphorus (P) is a limiting nutrient in freshwater systems and when present in runoff from agricultural lands or urban centers may contribute to excessive periphyton growth. In this study, we examined the link between soil erosion and delivery of eroded soil to streams during flow events, and the impact of that freshly deposited soil on dissolved reactive P (DRP) concentrations and periphyton growth under baseflow conditions when the risk of stream eutrophication is greatest. A microcosm experiment was designed to simulate the release of P from soil which had been amended with different amounts of P fertilizer to overlying water during baseflow conditions. Unglazed tiles, inoculated for five days in a second order stream, were incubated for seven days in microcosms containing soil with eight levels of soil Mehlich‐3 plant available phosphorus (M3P) ranging from 20 to 679 mg/kg M3P. Microcosm DRP was monitored. Following incubation tiles were scraped and the periphyton analyzed for chlorophyll a. Microcosm DRP concentrations increased with increasing soil M3P and equilibrium phosphorus concentration (EPC0). Relationships between M3P, EPC0, and DRP were nonlinear and increases in soil M3P and/or DRP had a greater impact on biomass accumulation when these parameters were above threshold values of 30 mg/kg M3P and 0.125 mg/L DRP. Significantly, this ecological threshold corresponds to the agronomic thresholds above which increased soil M3P does not increase plant response.  相似文献   

15.
针对油井附近落地油污染地表土壤的问题,利用热蒸发色谱技术,对油污土壤中加入微生物对原油的降解特征进行了实验研究。实验结果表明,在油污土壤中加入微生物,对落地油有明显的降解作用,可以减轻石油生产过程中油污对土壤的破坏和对环境的污染。随着微生物降解作用的不断进行,土壤中污油的相对降解速度逐渐加快,相对降解率逐渐增加。生物处理法的过程较简单,处理费用低,处理效果好,一般不会产生二次污染。  相似文献   

16.
Abstract: The pollutant reduction possible with a given agricultural best‐management practice (BMP) is complex and site‐specific. Water‐quality models can evaluate BMPs, but model results are often limited by the lack of calibrated parameters for a given BMP. This study calibrated runoff prediction of two models (ADAPT and SWAT) for individual field plots having one till and two no‐till management practices. The factors used for runoff calibration were curve number II (CNII) and saturated hydraulic conductivity (Ksat) for ADAPT, and CNII, Ksat, and available water capacity for SWAT. Results were evaluated using coefficient of determination (R2), Nash‐Sutcliffe efficiency (Ef), root‐mean square error, median‐based Ef, and sign tests. Results indicated that for ADAPT, the best‐fit CNII was 66 for the NT/SB (no‐till plot with surface‐broadcast fertilizer) treatment, 68 for the NT/DB (no‐till with deep‐banded fertilizer) treatment, and 70 for the tilled plot, whereas for SWAT the best‐fit CNII was much higher, 86, for all treatments. Neither agreed with the textbook CNII, 78, for sorghum in silty clay loam soil. The best‐fit model parameters for both runoff calibration phases had excellent correlation to monthly totals and moderate correlation to individual events.  相似文献   

17.
A 6-month greenhouse pot trial was performed, aimed at screening appropriate Sesbania species for remediation of Pb/Zn and Cu mine tailings. Performances of young seedlings of four Sesbania species (S. cannabina, S. grandiflora, S. rostrata, and S. sesban) were compared with and without inoculation of rhizobia. Seedlings were planted in two types of tailings amended with garden soil or garden soil mixed with river sediment. The results indicated that inoculated plants generally produced a higher biomass than samples without inoculation. Pb/Zn mine tailings containing rather high concentrations of total and water-soluble Cu, Pb, and Zn were toxic to plant growth compared with Cu mine tailings, according to the growth performance of the four species. Sesbania sesban and S. rostrata showed superior growth performance, compared to the other two species. Thus, they can serve as pioneer species to modify the barren environment, by providing organic matter and essential nutrients such as nitrogen, upon decomposition, in a relatively short period of time. This is especially true for S. rostrata, which is an annual plant that forms both stem and root nodules. However, a longer-term field trial should be conducted to investigate if superior species can beneficially modify the habitat for the growth of subsequent plant communities.  相似文献   

18.
The biological removal of phosphates was carried as a part of treatment strategy. Vetiveria zizanioides (L.) Nash belonging to the family Poaceae was used for biological removal of biostimulants. Vetiver reportedly has mycorrhizal association; besides having potential for removal of PO4 −3 also showed allelopathic affect on the microorganisms present in the water. In fact after a period of 96 h old roots of this plant have been found to have killing effects on the E. coli, Enterobacter spp. Pseudomonas spp. belonging to the family Enterobacteriaceae. The paper is opening a new face of study.  相似文献   

19.
The aim of this work was to investigate the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF-EMF) and mechanical vibration at infrasound frequency (MV at IS frequency or MV) on growth and development of Escherichia coli K-12, by using classical microbiological (counting colony forming units), isotopic, spectrophotometric and electronmicroscopic methods. The frequency-dependent effects of MV and ELF-EMF were shown that they could either stimulate or inhibit the growth and the division of microbes depending on the periods following exposure. However, the mechanism through which the MV and ELF-EMF effects affect the bacteria cell is not clear yet. It was suggested that the aqua medium could serve a target through which the biological effect of MV and ELF-EMF on microbes could be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz) of both MV and ELF-EMF on the bacterial growth, division and their motility in cases of exposure, the preliminary treated microbes-free medium and microbes containing medium were studied. Both MV and ELF-EMF effect on microbes have frequency and post-exposure period duration-dependent characters. The [ 3 H]-thymidine involving experiments shown that EMF at 4 Hz exposure has pronounced stimulation effect on cell proliferation while 4 Hz MV has inhibition effect. But at 8–10 Hz, the both EMF and MV have inhibitory effects on cell proliferation. It is suggested that 4 and 8 Hz EMF have different biological effects on microbes.  相似文献   

20.
Cities in Bangladesh produce large amounts of solid waste (SW) through various human activities which severely pollutes our native environment. As a result, SW pollutes the three basic environmental elements (air, water, and soil) by increasing pathogenic microbial load, which might be hazardous to public health directly or indirectly. In this study, we conducted 30 samples (i.e., soil, water, and air) collected from areas where municipal solid wastes are dumped (Tangail Sadar Upazila, Bangladesh). All the samples were analyzed to assess bacteriological quality for presumptive viable and coliform count using different agar media. We performed serial dilution 10−3–10−10 times for soil and water samples, and the diluted samples were spread on Mac-Conkey agar and nutrient agar plates. For the air sample, the sterile media containing petri-dish was placed adjacent to the dumpsite of the municipal waste and kept for an hour. Then all the samples were incubated at 37°C overnight for total viable count (TVC) and total coliform count (TCC). Biochemical tests and PCR were performed for the identification of these microorganisms. The antibiogram study was performed to reveal their (identified bacteria) susceptibility against clinically used antibiotics according to the standard disk diffusion technique. The highest bacterial loads were found in the air: TVC 3.273 × 103 and TCC 1.059 × 103 CFU/plate; tube-well water: TVC 8.609 × 103, and TCC 8.317 × 103 CFU/mL; in surface water: TVC 6.24 × 1013 CFU/mL and TCC 2.2 × 1012 CFU/mL; in soil: TVC 2.88 × 1011 and TCC 1.02 × 1011 CFU/g, respectively. Microbes from SW can be transmitted through air, dust particles, or flies, and here we found an average of 1120 microbes spread over 63.61 cm2 area per hour. Eight bacterial isolates (Pseudomonas spp., Klebsiella spp., E. coli, Proteus spp., V. cholera, Salmonella spp., Shigella spp., and Vibrio spp.) were identified by the biochemical test. Among them, E. coli and Shigella spp. were further ensured by PCR targeting bfpA and ipaH genes. Antibiotic susceptibility test results showed that E. coli isolates were highly resistant to erythromycin (80%); Shigella spp. were resistant to nalidixic acid (90%), whereas Salmonella spp. was found resistant to kanamycin (90%). Vibrio spp. were also resistant to azithromycin (80%) and erythromycin (80%), which should be a great concern for us. A semi-structured survey revealed that 63% of respondents suffered from different clinical conditions (intestinal diseases) due to SW pollution. So, steps should be taken to improve the proper management and disposal of solid waste and liquid effluent to save our environment and public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号