首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Considerable researches have documented the negative effects of ozone on woody species in North America and Europe; however, little is known about how woody tree species respond to elevated O3 in subtropical China, and most of the previous studies were conducted using pot experiment. In the present study, Machilus ichangensis Rehd. et Wils (M. ichangensis) and Taxus chinensis (Pilger) Rehd. (T. chinensis), evergreen tree species in subtropical China, were exposed to non-filtered air (NF), 100 nmol mol?1 O3 (E1) and 150 nmol mol?1 O3 (E2), in open-top chambers under field conditions from 21st March to 2nd November 2015. In this study, O3 fumigation significantly reduced net photosynthesis rate (Pn) in M. ichangensis in the three measurements and in T. chinensis in the last measurement. Also, non-stomatal factors should be primarily responsible for the decreased Pn. O3 fumigation-induced increase in malondialdehyde, superoxide dismutase, and reduced ascorbic acid levels indicated that antioxidant defense mechanism had been stimulated to prevent O3 stress and repair the oxidative damage. Yet, the increase of antioxidant ability was not enough to counteract the harm of O3 fumigation. Because of the decrease in CO2 assimilation, the growth of the two tree species was restrained ultimately. The sensitivity of the two tree species to O3 can be determined: M. ichangensis > T. chinensis. It suggests a close link between the rising O3 concentrations and the health risk of some tree species in subtropics in the near future.  相似文献   

3.
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature ?35 °C, pH 8, and initial cell concentration 7?×?107 cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.  相似文献   

4.
5.

Background, aim, and scope  

Composting is being proposed as a pretreatment step before disposal of metal-rich biomass after phytoextraction process. This study determined the biomass reduction and arsenic transformation during composting As-rich biomass of hyperaccumulator Chinese brake fern (Pteris vittata L.).  相似文献   

6.
7.

Background, aim, and scope  

Hexane, a representative VOC, is used as a solvent for extraction and as an ingredient in gasoline. The degradation of hexane by bacteria is relatively slow due to its low solubility. Moreover, the biodegradation pathway of hexane under aerobic conditions remains to be investigated; therefore, a study relating to aerobic biodegradation mechanisms is required. Consequently, in this study, an effective hexane degrader was isolated and the biodegradation pathway examined for the first time. In addition, the degradation characteristics of a variety of recalcitrant hydrocarbons were qualitatively and quantitatively investigated using the isolate.  相似文献   

8.
9.

Purpose  

This work was planned for providing a useful screening tool for the selection of Populus alba clones suitable for phytoremediation techniques. To this aim, we investigated variation in arsenic, cadmium, copper, and zinc tolerance, accumulation and translocation in three poplar clones through an in vitro screening. Poplars have been widely proposed for phytoremediation, as they are adaptable to grow on contaminated areas and able to accumulate metals. The investigation of possible differences among poplar clones in metal tolerance and accumulation deserves to be deeply studied and exploited for the selection of the more suitable tool for phytoremediation purposes.  相似文献   

10.
11.
12.
13.

Introduction  

A Microcoleus sp. consortium, obtained from the Ebro delta microbial mat, was maintained under different conditions including uncontaminated, lead-contaminated, and acidic conditions.  相似文献   

14.

Background, aim, and scope  

Indiscriminate use of insecticides leads to environmental problems and poses a great threat to beneficial microorganisms. The aim of the present work was to study chlorpyrifos degradation by a rice field cyanobacterium Synechocystis sp. strain PUPCCC 64 so that the organism is able to reduce insecticide pollution in situ.  相似文献   

15.
16.
Plutonium associated with higher molecular weight molecules is presumed to be poorly mobile and hardly plant available. In our present study, we investigate the uptake and effects of Pu treatments on Solanum tuberosum plants in amended Hoagland medium at concentrations of [242Pu] = 100 and 500 nm, respectively. We found a direct proof of oxidative stress in the plants caused by these rather low concentrations. For the confirmation of oxidative stress, we explored the production of nitric oxide (NO) and hydrogen peroxide (H2O2) by epifluorescence microscopy. Oxidative stress markers like lipid peroxidation and superoxide radicals (O2 ??) are monitored through histochemical analysis. The biochemical parameters i.e. chlorophyll and carotenoids are measured as an indicator of cellular damage in the tested plants including the enzymatic parameters such as catalase and glutathione reductase. From our work, we conclude that Pu in low concentration has no significant effects on the uptake of many trace and macroelements. In contrast, the content of O2 ?? , malondialdehyde (MDA), and H2O2 increases with increasing Pu concentration in the solution, while the opposite effects was found for NO, catalase, and glutathione reductase. These findings prove that even low concentration of Pu regulates ROS production and generate oxidative stress in S. tuberosum L.  相似文献   

17.
18.
19.

Purpose  

This study aimed to associate the intensity of vehicular traffic in the city of Dourados (Mato Grosso do Sul State, Brazil) with mutagenic effects and alterations in leaf physiology as measured by the quantity of micronuclei and the leaf surface parameters of Tradescantia pallida.  相似文献   

20.
Strain DNS10 was isolated from the black soil collected from the northeast of China which had been cultivated with atrazine as the sole nitrogen source. Pennisetum is a common plant in Heilongjiang Province of China. The main objective of this paper was to evaluate the efficiency of plant–microbe joint interactions (Arthrobacter sp. DNS10 + Pennisetum) in atrazine degradation compared with single-strain and single-plant effects. Plant–microbe joint interactions degraded 98.10 % of the atrazine, while single strain and single plant only degraded 87.38 and 66.71 % after a 30-day experimental period, respectively. The results indicated that plant–microbe joint interactions had a better degradation effect. Meanwhile, we found that plant–microbe joint interactions showed a higher microbial diversity. The results of microbial diversity illustrated that the positive effects of cropping could improve soil microbial growth and activity. In addition, we planted atrazine-sensitive plants (soybean) in the soil after repair. The results showed that soybean growth in soil previously treated with the plant–microbe joint interactions treatment was better compared with other treatments after 20 days of growth. This was further proved that the soil is more conducive for crop cultivation. Hence, plant–microbe joint interactions are considered to be a potential tool in the remediation of atrazine-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号