首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

2.
We compare a global model of mercury to sediment core records to constrain mercury emissions from the 19th century North American gold and silver mining. We use information on gold and silver production, the ratio of mercury lost to precious metal produced, and the fraction of mercury lost to the atmosphere to calculate an a priory mining inventory for the 1870s, when the historical gold rush was at its highest. The resulting global mining emissions are 1630 Mg yr?1, consistent with previously published studies. Using this a priori estimate, we find that our 1880 simulation over-predicts the mercury deposition enhancements archived in lake sediment records. Reducing the mining emissions to 820 Mg yr?1 improves agreement with observations, and leads to a 30% enhancement in global deposition in 1880 compared to the pre-industrial period. For North America, where 83% of the mining emissions are located, deposition increases by 60%. While our lower emissions of atmospheric mercury leads to a smaller impact of the North American gold rush on global mercury deposition than previously estimated, it also implies that a larger fraction of the mercury used in extracting precious metals could have been directly lost to local soils and watersheds.  相似文献   

3.
Mercury contamination in freshwater food webs can be severe and persistent, and freshwater fish are a major source of mercury contamination in humans. Northern hemisphere studies suggest that the primary pathway by which freshwater fish accumulate mercury is the food web, and that atmospheric deposition is the primary route by which mercury enters freshwater systems. Levels of atmospheric deposition are closely linked to proximity to sources of mercury emissions. These propositions have not been tested in the southern hemisphere. In this study, we measured mercury levels at three lakes in southern Brazil and assessed relationships between mercury in precipitation, lake water, sediment and fish tissues at sites close to (industrial and suburban areas) and distant from (protected conservation area) sources of mercury emissions. We also assessed relationships between mercury in fish species and their trophic habits. Mercury concentrations in sediment and lake water did not vary among lakes. In contrast, mercury in precipitation at the study lakes increased with proximity to industrial sources. Mercury in fish tissue generally increased along the same gradient, but also varied with trophic level and preferred depth zone. Atmospheric mercury deposition to these closed lakes may be directly linked to concentrations in fish, with surface-feeding piscivorous species attaining the highest concentrations.  相似文献   

4.
A modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at three receptor locations in New York State. For the nominal scenario, the anthropogenic emission sources (including re-emission of deposited Hg) in New York State, the rest of the contiguous United States, Asia, Europe, and Canada contributed 11-1, 25-9, 13-19, 5-7, and 2-5%, respectively to total Hg deposition at these three receptors. Natural sources contributed 16-4%. The results from the local deposition and long-range transport scenarios varied only slightly from these results. However, there are still uncertainties in our understanding of the atmospheric chemistry of Hg that are likely to affect these estimates of local, regional and global contributions. Comparison of model simulation results with data from the Mercury Deposition Network suggests that local and regional contributions may currently be overestimated.  相似文献   

5.
Lake-sediment records across the Northern Hemisphere show increases in atmospheric deposition of anthropogenic mercury (Hg) over the last 150 years. Most of the previous studies have examined remote lakes affected by the global atmospheric Hg reservoir. In this study, we present Hg flux records from lakes in an urban/suburban setting of central New York affected also by local and regional emissions. Sediment cores were collected from the Otisco and Skaneateles lakes from the Finger Lakes region, Cross Lake, a hypereutrophic lake on the Seneca River, and Glacial Lake, a small seepage lake with a watershed that corresponds with the lake area. Sediment accumulation rates and dates were established by 210Pb. The pre-anthropogenic regional atmospheric Hg flux was estimated to be 3.0 μg m−2 yr−1 from Glacial Lake, which receives exclusively direct atmospheric deposition. Mercury fluxes peaked during 1971–2001, and were 3 to more than 30 times greater than pre-industrial deposition. Land use change and urbanization in the Otisco and Cross watersheds during the last century likely enhanced sediment loads and Hg fluxes to the lakes. Skaneateles and Glacial lakes have low sediment accumulation rates, and thus are excellent indicators for atmospheric Hg deposition. In these lakes, we found strong correlations with emission records for the Great Lakes region that markedly increased in the early 1900s, and peaked during WWII and in the early 1970s. Declines in modern Hg fluxes are generally evident in the core records. However, the decrease in sediment Hg flux at Glacial Lake was interrupted and has increased since the early 1990s probably due to the operation of new local emission sources. Assuming the global Hg reservoir tripled since the pre-industrial period, the contribution of local and regional emission sources to central New York lakes was estimated to about 80% of the total atmospheric Hg deposition.  相似文献   

6.
There are inadequate measurements of surface ambient concentrations of mercury species and their deposition rates for the UK deposition budget to be characterized. In order to estimate the overall mercury flux budget for the UK, a simple long-term 1D Lagrangian trajectory model was constructed that treats emissions (1998), atmospheric transformation and deposition across Europe. The model was used to simulate surface concentrations of mercury and deposition across Europe at a resolution of 50 km×50 km and across the UK at 20 km×20 km. The model appeared to perform adequately when compared with the few available measurements, reproducing mean concentrations of elemental gaseous mercury at particular locations and the magnitude of regional gradients. The model showed that 68% of the UK's mercury emissions are exported and 32% deposited within the UK. Of deposition to the UK, 25% originates from the Northern Hemisphere/global background, 41% from UK sources and 33% from other European countries. The total mercury deposition to the UK is in good agreement with other modelling, 9.9 tonne yr−1 cf. 9.0 tonne yr−1, for 1998. However, the attribution differs greatly from the results of other coarser-scale modelling, which allocates 55% of the deposition to the UK from UK sources, 4% from other European countries and 60% from the global background atmosphere. The model was found to be sensitive to the speciation of emissions and the dry deposition velocity of elemental gaseous mercury. The uncertainties and deficiencies are discussed in terms of model parameterization and input data, and measurement data with which models can be validated. There is an urgent requirement for measurements of removal terms, concentrations, and deposition with which models can be parameterized and validated.  相似文献   

7.
This paper presents a comprehensive atmospheric global and regional mercury model and its capability in describing the atmospheric cycling of mercury. This is an on-line model (integrated within the Canadian operational environmental forecasting and data assimilation system) which can be used to understand the role of meteorology in mercury cycling (atmospheric pathways), the inter-annual variability of mercury and can be evaluated against observations on global scales. This is due to the fact that the model uses a combination of actual observed and predicted meteorological state of the atmosphere at high resolution to integrate the model as opposed to the climatological approach used in existing global mercury models. The model was integrated and evaluated on global scale using only anthropogenic emissions. North to south gradients in mercury concentrations, seasonal variability, dry and wet deposition and vertical structure are well simulated by the model. The model was used to explain the observed seasonal variations in atmospheric mercury circulation. The results from this study include a global animation of surface air concentrations of total gaseous mercury for 1997.  相似文献   

8.
The history of mercury emissions from fuel combustion in Maritime Canada   总被引:1,自引:0,他引:1  
In this study, we present an inventory of historical emissions of mercury resulting from combustion of wood, coal and refined petroleum products in Maritime Canada. The pattern of emissions illustrates the strong influences of population growth, industrial development and prevailing fuel preferences in the region. According to our calculations, anthropogenic mercury releases from fuel combustion in Maritime Canada have cumulatively totaled more than 50 tonnes since 1800. We have compiled both high and low estimates of annual mercury releases in this region. Mercury emissions from fuel combustion in Maritime Canada reached a maximum level in the 1940s. At this time, emissions were between 778 (low) and 1494 (high) kg per year, coinciding with the period of most intensive coal use in Maritime Canada. In 1995, emissions were approximately 54% of the level reached in 1940, at 427 (low)-800 (high) kg per year. In presenting this emissions inventory, we hope to refine past estimates with current information on the mercury content of different fuel types, and create a comprehensive database on how mercury emissions from various sources have changed over time.  相似文献   

9.
This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m3 are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50 % decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM in combination with an underestimation of low precipitation events in the meteorological models lead to a good agreement of total annual wet deposition besides the large error in weekly deposition estimates. Moreover, it was found that the current speciation profiles for GOM emissions are the main factor for the overestimation of atmospheric GOM concentrations and might need to be revised in the future. The assumption of zero emissions of GOM lead to an improvement of the mean normalized bias for three-hourly observations of atmospheric GOM from 9.7 to 0.5, Furthermore, the diurnal correlation between model and observation increased from 0.01 to 0.64. This is a strong indicator that GOM is not directly emitted from primary sources but is mainly created by oxidation of GEM.  相似文献   

10.
Mercury contamination in Canada's Bay of Fundy is a priority concern because of elevated levels observed in fish, birds and wildlife. Salt marshes constitute an important part of the Bay's coastline and are potential stores of mercury for the region. We measured the amount of mercury accumulated over a 5-yr period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay. The seven study sites extended from outer to inner Bay, spanning a gradient in tidal range (6-12 m) and sediment characteristics such as %LOI (4-29%) and sediment deposition rate (0.27-1.76 cm yr(-1)). In each study site, mercury was measured in low and high marsh areas. Sediment mercury concentrations ranged from 7 to 79 ng g(-1) and loading rates ranged from 0.1 to 1.1 mg m(-2). Total estimated 5-yr storage of mercury in salt marsh sediments of the Bay is 854+/-465 kg. We also compared sediment mercury loading to atmospheric inputs measured at a deposition monitoring station operating in New Brunswick from 1997 to 2002 and found that direct atmospheric deposition appears to be a minor input of mercury to these sediments. We are unaware of documentation of mercury loading in salt marshes on a bay-wide scale and over a constrained (5-yr) time period elsewhere.  相似文献   

11.
Changes in deposition of gaseous divalent mercury (Hg(II)) and particulate mercury (Hg(p)) in New Hampshire due to changes in local sources from 1996 to 2002 were assessed using the Industrial Source Complex Short Term (ISCST3) model (regional and global sources and Hg atmospheric reactions were not considered). Mercury (Hg) emissions in New Hampshire and adjacent areas decreased significantly (from 1540 to 880 kg yr−1) during this period, and the average annual modeled deposition of total Hg also declined from 17 to 7.0 μg m−2 yr−1 for the same period. In 2002, the maximum amount of Hg deposition was modeled to be in southern New Hampshire, while for 1996 the maximum deposition occurred farther north and east. The ISCST3 was also used to evaluate two future scenarios. The average percent difference in deposition across all cells was 5% for the 50% reduction scenario and 9% for the 90% reduction scenario.  相似文献   

12.
The emission, transport, deposition and eventual fate of mercury (Hg) in the Mediterranean area has been studied using a modified version of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem). This model version has been developed specifically with the aim to simulate the atmospheric processes determining atmospheric Hg emissions, concentrations and deposition online at high spatial resolution. For this purpose, the gas phase chemistry of Hg and a parametrised representation of atmospheric Hg aqueous chemistry have been added to the regional acid deposition model version 2 chemical mechanism in WRF/Chem. Anthropogenic mercury emissions from the Arctic Monitoring and Assessment Programme included in the emissions preprocessor, mercury evasion from the sea surface and Hg released from biomass burning have also been included. Dry and wet deposition processes for Hg have been implemented. The model has been tested for the whole of 2009 using measurements of total gaseous mercury from the European Monitoring and Evaluation Programme monitoring network. Speciated measurement data of atmospheric elemental Hg, gaseous oxidised Hg and Hg associated with particulate matter, from a Mediterranean oceanographic campaign (June 2009), has permitted the model’s ability to simulate the atmospheric redox chemistry of Hg to be assessed. The model results highlight the importance of both the boundary conditions employed and the accuracy of the mercury speciation in the emission database. The model has permitted the reevaluation of the deposition to, and the emission from, the Mediterranean Sea. In light of the well-known high concentrations of methylmercury in a number of Mediterranean fish species, this information is important in establishing the mass balance of Hg for the Mediterranean Sea. The model results support the idea that the Mediterranean Sea is a net source of Hg to the atmosphere and suggest that the net flux is ≈30 Mg year?1 of elemental Hg.  相似文献   

13.
Mercury (Hg) is a highly toxic environmental contaminant and man-made emissions account for between a quarter and a third of total atmospheric levels. Point discharges, particularly coal-burning power stations, are major sources of atmospheric Hg and can result in marked spatial variation in mercury deposition and subsequent uptake by biota. The aims of this study were to quantify the extent to which major point and diffuse sources of atmospheric Hg emissions affected accumulation of Hg by biota throughout Galicia and Asturias, two of the major regions in northwest Spain. We did this by relating renal Hg concentrations in locally reared cattle (n=284) to the proximity of animals to point and diffuse sources of Hg emissions. Mercury residues in calf kidneys ranged between non-detected and 89.4 g/kg wet weight. Point discharges from coal-fired power plants in Galicia had the most dominant impact on Hg accumulation by calves in Galicia, affecting animals throughout the region and explaining some two-thirds of the variation in renal residues between animals located directly downwind from the plants. The effects of more diffuse emission sources on Hg accumulation in calves were not distinguishable in Galicia but were detected in cattle from neighbouring Asturias. The impact of both point and diffuse sources in elevating environmental levels of bioavailable Hg and subsequent accumulation by cattle extended to approximately 140-200 km downwind from source.  相似文献   

14.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

15.
This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period.  相似文献   

16.
Quantifying the contribution of emission sources responsible for mercury deposition in specific receptor regions helps develop emission control strategies that alleviate the impact on ecosystem and human health. In light of the maximum available control technology (MACT) rules proposed by U.S. Environmental Protection Agency (EPA) and the ongoing intergovernmental negotiation coordinated by United Nations Environmental Programme (UNEP) for mercury, the Community Multiscale Air Quality Modeling System (CMAQ-Hg) was applied to estimate the source contribution in six subregions of the contiguous United States (CONUS). The considered source categories include electric generating units (EGU), iron and steel industry (IRST), other industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC). It is found that, on an annual basis, dry deposition accounts for two-thirds of total annual deposition in CONUS (474 Mg yr(-1)), mainly contributed by reactive gaseous mercury (about 60% of total deposition). The contribution from large point sources can be as high as 75% near the emission sources (< 100 km), indicating that emission reduction may result in direct deposition decrease near the source locations. Out-of-boundary transport contributes from 68% (Northeast) to 91% (West Central) of total deposition. Excluding the contribution from out-of boundary transport, EGU contributes to about 50% of deposition in the Northeast, Southeast, and East Central regions, whereas emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). This suggests that the implementation of the new EPA MACT standards will significantly benefit only these three regions. Emission speciation is a key factor for local deposition. The source contribution exhibits strong seasonal variation. Deposition is greater in warm seasons due to stronger Hg0 oxidation. However, the contribution from anthropogenic sources is smaller in warm seasons because of larger emissions from natural processes and stronger vertical mixing that facilitates transport.  相似文献   

17.
Region-to-grid source–receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10–40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.  相似文献   

18.
Preparation of mercury emissions inventory for eastern North America   总被引:1,自引:0,他引:1  
Point and area inventories of anthropogenic mercury emissions documented by US and Canadian environmental agencies have been aggregated into a single archive for analysis and air pollution modeling work. For 5341 point sources and 1634 aggregated area sources, mercury emissions are apportioned among elemental gaseous [Hg(0)], reactive gaseous[Hg(II)], and particulate [Hg(p)] emissions using speciation factors derived from available monitoring measurements. According to this inventory, 4.82 x 10(5) mol of mercury were emitted in calendar year 1996 in the latitude range 24-51 degrees north, and longitude range 64-91 degrees west, which covers most of North America east of the Mississippi River. Using speciation factors consistent with past emission source studies, we find the relative emission proportions among Hg(0):Hg(II):Hg(p) species are 47:35:18. Maps of the various mercury species' emissions patterns are presented. Gridded emission patterns show local mercury emission extremes associated with individual cement production and municipal incineration facilities, and in contrast to past inventories, population centers do not stand out. Considerable uncertainties are still present in estimating emissions from large point sources, as are methods of apportioning emissions among various mercury species.  相似文献   

19.
The UN Global Mercury Assessment (GMA) estimates that atmospheric emissions of mercury from Australian stationary combustion sources were 97.0 tonnes for the year of 1995. This is more than 90% of the estimated emissions from stationary combustion for the whole of North America, and seems abnormally high for a country with a population of around 20 million, in spite of the fact that most of Australia's stationary energy supply is provided by coal. It is also significantly larger than previous estimates of mercury emissions from Australian sources. New estimates of Australian mercury emissions from stationary energy sources, based on both a top down and bottom up approach, are presented. These estimates can be reconciled for black coal fired power stations, but suggest that the bottom up approach (the Australian National Pollutant Inventory) significantly under-estimates emissions from brown coal fired plant, if mercury capture efficiencies in these plants are low, as observed for lignite-fired plant. The major uncertainties in these estimates are the coal mercury content in coals burnt in Australian power stations, and the mercury capture efficiency in particulate control devices used at these stations. Based on these estimates, Australian emissions of mercury from stationary energy are currently 2–8 tonnes/year, significantly lower than the GMA estimate.  相似文献   

20.
This study identified sources of mercury (Hg) in downtown Toronto, Canada by analyzing gaseous elemental mercury (GEM), mercury associated with particles with sizes less than 2.5 microns (PHg < 2.5), and gaseous oxidized inorganic mercury (GOIM), commonly referred to as reactive gaseous mercury (RGM), and air pollutants (CO, NOx, O3, PM2.5, SO2) concentrations between Dec 2003 and Nov 2004. The data were analyzed using Positive Matrix Factorization (PMF) model, Principal Components Analysis (PCA), ratio analysis, back trajectories, and correlation analyses. The analyses suggest industrial sources (chemical production, metal production, sewage treatment), rather than coal combustion, were the major contributors to measured Hg levels. Overlap in source profiles for the Hg sources listed in the Canadian National Pollutant Release Inventory (NPRI) and lack of source profiles for urban sources were the major limitations to positively identifying sources from the PMF and PCA factors. Correlation analyses revealed direct emissions were the sources of GOIM in spring, summer, and fall, and the occurrence of GEM oxidation by ozone in the summer. Elevated Hg events are attributed to emissions from urban sources near the sampling site, regional point sources, and photochemical processes involving ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号