首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]) were studied testing their binary mixtures in two crustaceans that are part of the freshwater food chain, namely Daphnia magna and Ceriodaphnia dubia. Genotoxicity was assessed using the in vivo comet assay. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results obtained for D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions, our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.  相似文献   

2.
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.  相似文献   

3.
The residues of antineoplastic drugs are considered as new and emerging pollutants in aquatic environments. Recent experiments showed relatively high toxicity of 5-fluorouracil (5-FU), imatinib mesylate (IM), etoposide (ET) and cisplatin (CP) that are currently among most widely used antineoplastic drugs, against phytoplankton species. In this study, we investigated the toxic potential of the mixture of 5-FU?+?IM?+?ET against green alga Pseudokirchneriella subcapitata and cyanobacterium Synechococcus leopoliensis, and the stability and sorption of these drugs to algal cells. Toxic potential of the mixture was predicted by the concepts of ‘concentration addition’ and ‘independent action’ and compared to the experimentally determined toxicity. In both test species, the measured toxicity of the mixture was at effects concentrations EC10–EC50 higher than the predicted, whereas at higher effect concentration (EC90), it was lower. In general, P. subcapitata was more sensitive than S. leopoliensis. The stability studies of the tested drugs during the experiment showed that 5-FU, IM and CP are relatively stable, whereas in the cultures exposed to ET, two transformation products with the same mass as ET but different retention time were detected. The measurements of the cell-linked concentrations of the tested compounds after 72 h exposure indicated that except for CP (1.9 % of the initial concentration), these drugs are not adsorbed or absorbed by algal cells. The results of this study showed that in alga and cyanobacteria exposure to the mixture of 5-FU?+?ET?+?IM, in particular at low effect concentration range, caused additive or synergistic effect on growth inhibition, and they suggest that single compound toxicity data are not sufficient for the proper toxicity prediction for aquatic primary producers.  相似文献   

4.
Cytostatic drugs are among the most toxic chemicals which are produced. Many of them cause damage of the genetic material which may affect the fertility of higher organisms. To study the impact of the widely used anticancer drugs [cisplatin (CisPt), etoposide (Et), and 5-fluorouracil (5-FU)] on the reproduction of higher plants, pollen abortion experiments were conducted with species which belong to major plant families, namely with Tradescantia paludosa (Commelinaceae), Arabidopsis thaliana (Brassicaceae), Chelidonium majus (Papaveraceae), and Alisma plantago-aquatica (Alismataceae). All compounds increased the frequencies of abortive grains. The lowest effective doses were in general in a narrow range (i.e., 1 and 10 mg/kg of dry soil). The effects of the individual drugs were similar in T. paludosa, A. plantago-aquatica, and Ch. majus, while A. thaliana was consistently less sensitive. The highest abortion rate was obtained in most experiments with CisPt, followed by 5-FU and Et. Comparisons of the doses which caused effects in the present experiments in the different species with the predicted environment concentrations and with the levels of the cytostatics which were detected in hospital wastewaters show that the realistic environmental concentrations of the drugs are 4–6 orders of magnitude lower. Therefore, it is unlikely that these drugs affect the fertility of higher plants in aquatic and terrestrial ecosystems.  相似文献   

5.
The genotoxic effects of oxidative metabolites of trichloroethylene (TCE), namely chloral hydrate, trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol (TCEOH) were examined in human peripheral blood lymphocytes. In this context, lymphocytes were exposed in vitro to 25, 50, and 100 μg/ml concentrations of these metabolites separately for a period of 48 h and examined for micronucleus (MN) induction through flow cytometer. At 50 μg/ml TCE metabolites, TCA (6.33?±?0.56 %), DCA (5.06?±?0.55), and TCEOH (4.70?±?1.73) induced highly significant (p?<?0.001) frequency of MN in comparison to control (1.03?±?0.40) suggestive of their genotoxic potential. However, exposure of 100 μg/ml of all the metabolites consistently declined the frequencies of MN which in some cases was equable to that of observed at 25 μg/ml. Further, cytotoxicity and cell cycle disturbances were also measured to find out the association of these endpoints with the MN induction. DNA content analysis revealed 3–4-fold elevation of S-phase at all the concentrations tested. Particularly, at 100 μg/ml, treatment elevation of S-phase was significantly (p?<?0.0001) higher as compared to the control. Present findings together with earlier reports indicate that TCE induces genotoxicity through its metabolites. Interaction of these metabolites with DNA, as evident by elevated S-phase, seems to be the major cause of MN induction. However, involvement of spindle disruption cannot be ruled out. This comparative study also suggests that after TCE exposure, the metabolic efficiency of human to generate oxidative metabolites determines the extent of genotoxicity.  相似文献   

6.
Due to their increasing use, the residues of anti-neoplastic drugs have become emerging pollutants in aquatic environments. Most of them directly or indirectly interfere with the cell’s genome, which classifies them into a group of particularly dangerous compounds. The aim of the present study was to conduct a comparative in vitro toxicological characterisation of three commonly used cytostatics with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP] and etoposide [ET]) towards zebrafish liver (ZFL) cell line, human hepatoma (HepG2) cells and human peripheral blood lymphocytes (HPBLs). Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. All three drugs induced time- and dose-dependent decreases in cell viability. The sensitivity of ZFL and HepG2 cells towards the cytotoxicity of 5-FU was comparable (half maximal inhibitory concentration (IC50) 5.3 to 10.4 μg/mL). ZFL cells were more sensitive towards ET- (IC50 0.4 μg/mL) and HepG2 towards CDDP- (IC50 1.4 μg/mL) induced cytotoxicity. Genotoxicity was determined by comet assay and cytokinesis block micronucleus (CBMN) assay. ZFL cells were the most sensitive, and HPBLs were the least sensitive. In ZFL cells, induction of DNA strand breaks was a more sensitive genotoxicity endpoint than micronuclei (MNi) induction; the lowest effective concentration (LOEC) for DNA strand break induction was 0.001 μg/mL for ET, 0.01 μg/mL for 5-FU and 0.1 μg/mL for CDDP. In HepG2 cells, MNi induction was a more sensitive genotoxicity endpoint. The LOEC values were 0.01 μg/mL for ET, 0.1 μg/mL for 5-FU and 1 μg/mL for CDDP. The higher sensitivity of ZFL cells to cytostatic drugs raises the question of the impact of such compounds in aquatic ecosystem. Since little is known on the effect of such drugs on aquatic organisms, our results demonstrate that ZFL cells provide a relevant and sensitive tool to screen genotoxic potential of environmental pollutant in the frame of hazard assessment.  相似文献   

7.
The frequency of micronuclei (MN) and chromosome aberrations in anaphase-telophase (CAAT) was determined in root tips of the wetland macrophyte Bidens laevis exposed to environmentally relevant concentrations of endosulfan (0.01, 0.02, 0.5 and 5microg/L) for 48h. MN frequency varied from 0 in negative controls and plants exposed to 0.01microg/L endosulfan to 0-3 in plants exposed to 5microg/L. Moreover, a significant concentration-dependent increase of CAAT was observed. The higher proportion of laggards and vagrand chromosomes observed at 5microg/L would indicate that endosulfan interacts with the spindle interrupting normal chromosome migration. Endosulfan resulted genotoxic to B. laevis, a species of potential value for bioassays and in situ monitoring of environmental contamination by pesticides.  相似文献   

8.

Purpose

In the assessment of health risks of environmental pollutants, the method of dose addition and the method of independent action are used to assess mixture effects when no synergistic and/or antagonistic effects are present. Currently, no method exists to quantify synergistic and/or antagonistic effects for mixtures. The purpose of this paper is to develop the theoretical concepts of an overall risk probability (ORP)-based method to quantify the synergistic and antagonistic effects in health risk assessment for mixtures.

Method

The ORP for health effects of environmental chemicals was determined from the cumulative probabilities of exposure and effects. This method was used to calculate the ORP for independent mixtures and for mixtures with synergistic and antagonistic effects.

Results

For the independent mixtures, a mixture ORP can be calculated from the product of the ORPs of individual components. For systems of interacting mixtures, a synergistic coefficient and an antagonistic coefficient were defined respectively to quantify the ORPs of each individual component in the mixture. The component ORPs with synergistic and/or antagonistic effects were then used to calculate the total ORP for the mixture.

Conclusions

An ORP-based method was developed to quantify synergistic and antagonistic effects in health risk assessment for mixtures. This represents a first method to generally quantify mixture effects of interacting toxicants.  相似文献   

9.
The acute and sub-chronic effects of four cytostatic drugs—5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)—on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L?1, whereas in case of IM, LC50 was at 70.8 mg L?1. In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L?1. In case of CisPt, LC50 was 349.9 mg L?1 at 48 hpf and it progressively decreased to 81.3 mg L?1 at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L?1 at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L?1 , 72 hpf; 141.6 mg L?1, 96 hpf; 118.0 mg L?1, and 120 hpf; 65.9 mg L?1. In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L?1 concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L?1 is the LOEC. In case of IM, the highest tested concentration (10 mg L?1) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.  相似文献   

10.
Trichloroacetic acid (TCA), a common water disinfection byproduct and a persistent metabolite of trichloroethylene (TCE), has been examined for its genotoxic potential in human lymphocytes. Chromosomal aberration (CA) and cytokinesis-block micronucleus (CBMN) assay were employed to assess the toxicity of TCA. Lymphocytes obtained from three healthy donors were exposed to 25, 50, and 100 μg/ml concentration of TCA separately. TCA exposure resulted in chromosomal anomalies and the formation of micronuclei in lymphocytes. Chromosome analysis revealed the dose-dependent and significant induction of CA. Chromatid break/chromosome break, fragments, and chromatid exchanges were commonly observed. Exposure of higher concentration (50 and 100 μg/ml) significantly inhibited mitotic index. Data obtained with CBMN assay indicated that the induction of micronucleus (MN) formation was greater than that of CA. At 25 μg/ml, TCA induced significant frequencies of MN as compared to control cells. Significant induction of MN at the lowest concentration indicates TCA may also interact with mitotic spindles. Lower percentage of CA and MN at 100 μg/ml as compared to 50 μg/ml indicates occurrence of severe cytotoxicity on exposure of 100 μg/ml TCA in lymphocytes. Collectively, results of both cytogenetic assays indicate that exposure of TCA can induce significant genotoxic and cytotoxic effects.  相似文献   

11.

We previously reported high levels of phthalate esters (PAEs) added as solvents or fixatives in 47 brands of perfumes. Diethyl phthalate was the most abundant compound (0.232–23,649 ppm), and 83.3% of the perfumes had levels >1 ppm, the threshold limit cited by a Greenpeace investigation. All samples had dimethyl phthalate levels higher than its threshold limit of 0.1 ppm, and 88, 38, and 7% of the perfumes had benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and dibutyl phthalate levels, respectively, above their threshold limits. The role of PAEs as endocrine disruptors has been well documented, but their effect on genotoxic behavior has received little attention. We used in vitro single-cell gel electrophoresis (comet) and micronucleus (MN) assays with human lymphoblastoid TK6 cells to evaluate the genotoxic potency of 42 of the same perfumes and to determine its association with PAEs. All perfumes induced more DNA damage than a negative control (NEG), ≥ 90% of the samples caused more damage than cells treated with the vehicles possibly used in perfume’s preparations such as methanol (ME) and ethanol (ET), and 11.6% of the perfumes caused more DNA damage than a positive control (hydrogen peroxide). Chromosome breakage expressed as MN frequency was higher in cells treated with 71.4, 64.3, 57.1, and 4.8% of the perfumes than in NEG, cells treated with ME or ET, and another positive control (x-rays), respectively. The genotoxic responses in the comet and MN assays were not correlated. The comet assay indicated that the damage in TK6 cells treated with five PAEs at concentrations of 0.05 and 0.2 ppm either individually or as a mixture did not differ significantly from the damage in cells treated with the perfumes. Unlike the comet assay, the sensitivity of the MN assay to PAEs was weak at both low and high concentrations, and MN frequencies were generally low. This study demonstrates for the first time the possible contribution of PAEs in perfumes to DNA damage and suggests that their use as solvents or fixatives should be regulated. Other ingredients with mutagenic/genotoxic properties, however, may also have contributed to the DNA damage. Future studies should focus on applying a series of assays that use different cellular models with various endpoints to identify the spectrum of genotoxic mechanisms involved.

  相似文献   

12.
Aina R  Palin L  Citterio S 《Chemosphere》2006,65(4):666-673
Polycyclic aromatic hydrocarbons (PAHs) are among the most dangerous environmental contaminants due to their toxic, carcinogenic and mutagenic effects. Although there are many data in literature that detail the effects of PAHs on animals, little is known about their action on higher plants which are often used as bioindicators. The aim of the present study was to evaluate the genotoxicity of two different PAHs, benzo[a]pyrene (BaP) and naphthalene (Naph), on Trifolium repens L. Clover plants were exposed to soil which had been artificially contaminated with three concentrations of BaP (5, 10 and 20 microg g-1) or Naph (25, 50 and 100 microg g-1). After 15 days, changes in the DNA content and sequence of roots and shoots were evaluated by flow cytometry (FCM) and amplified fragment length polymorphism (AFLP). Root and shoot dry weight were also determined to assess plant growth. Results showed that BaP and Naph were both genotoxic for white clover, inducing significant changes in root and shoot DNA sequence. Damage was more severe in the root than in the shoot suggesting that the translocation of these compounds and their genotoxic metabolites was limited. Ploidy alterations were not detected and the extent of damage caused by all the tested PAH concentrations was not sufficient to affect plant development.  相似文献   

13.
Planarian neoblasts are somatic stem cells that have the potential to be used in genotoxicity assays due to their proliferative nature, sensitivity to genotoxic agents, and experimental accessibility. Two freshwater planarian species, Girardia tigrina and Girardia schubarti, were used to develop a neoblast-based micronucleus (MN) assay to assess genotoxicity. Intact or regenerating planarians were exposed to gamma-rays, methyl methanesulphonate (MMS), or cyclophosphamide (CP), and neoblast MN frequency was measured. Exposure to the clastogens had no detectable effect on the MN frequency of intact planarian neoblasts. However, for regenerating individuals, active neoblast proliferation was induced by decapitation, and gamma-ray doses as low as 0.5 Gy, and MMS and CP concentrations as low as 0.8 microM and 100 mM, respectively, induced a significant increase in MN frequency. Exposure to higher doses of gamma-rays consistently resulted in detectable increases in MN frequency. For MMS and CP, concentrations of up to 1.6 microM and 200 mM, respectively, resulted in significant increases in MN frequency, but exposures to higher concentrations led to a decrease to non-significant levels, possibly due to cytotoxic effects of MMS and CP. After completion of regeneration, the MN frequencies returned to those of non-exposed controls, indicating that the neoblast MN assay for regenerating G. tigrina or G. schubarti reflects chromosomal damage caused by acute exposure to clastogenic agents. Upon standardization, this assay may represent an interesting alternative that allows damage caused to freshwater organisms by potentially genotoxic environmental pollutants to be monitored.  相似文献   

14.
Ali D  Nagpure NS  Kumar S  Kumar R  Kushwaha B 《Chemosphere》2008,71(10):1823-1831
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridylphosphorothioate) is one of the organophosphate pesticides widely used in agricultural practices throughout world and irreversible inhibitor of cholinesterase in all animal species. Limited efforts have been made to study acute genotoxic effects of chlorpyrifos (CPF) in different tissues of fish using genotoxic biomarkers. Therefore, the present investigation was aimed to study the induction of DNA damage by CPF in freshwater teleost fish Channapunctatus using micronucleus assay (MN assay) and alkaline single-cell gel electrophoresis (comet assay). The value of LC(50) - 96 h of CPF was determined as 811.98 microgl(-1) for C. punctatus, in a semi-static system and on the basis of LC(50) value three acute concentrations viz., 203, 406 and 609 microgl(-1) were determined. The fishes were exposed to the different concentrations of CPF for 96 h and samplings were done at regular intervals for assessment of the MN frequencies and DNA damage. In general, significant effects (P<0.01) from both concentrations and time of exposure were observed in exposed fishes. It was found that the micronucleus induction was highest on 96 h at all concentrations in the peripheral blood. Similar trend was observed for the DNA damage measured in terms of the percentage of tail DNA in the lymphocyte and gill cells. This study explored the combined use of micronucleus assay and comet assay for in vivo laboratory studies using fresh water fish for screening the genotoxic potential of xenobiotics.  相似文献   

15.
V Bombail  D Aw  E Gordon  J Batty 《Chemosphere》2001,44(3):383-392
This report describes an investigation of genotoxic effects in an inter-tidal fish species sampled along a pollution gradient in the Firth of Forth, Scotland, UK. The comet assay is an electrophoretic technique for measuring DNA breakage in nuclei from individual cells and has only recently been applied to field investigations of genotoxicity. The measurement of nuclear anomalies (NA), such as the presence of micronuclei (MN) and 'lobes', has been successfully utilised in many field studies of genotoxic effects of contaminated sediments. These two techniques were applied to nucleated red blood cells (RBC) from the butterfish, Pholis gunnellus. The comet assay was adapted and validated for use in this species. Fish were sampled from the inner Firth of Forth, which has a legacy of industrial contamination and the outer Firth of Forth which is comparatively clean. The analysis of DNA strand breakage using this technique did not reveal any significant differences between animals sampled from inner and outer zones of the Firth. In contrast, MN and NA frequencies were elevated in the inner polluted zone of the Firth compared to the outer zone. This study suggests: (1) there are genotoxic effects associated with contaminants in the inner Firth of Forth, and (2) the comet assay may not be a suitable genotoxicity biomarker in fish.  相似文献   

16.
Background, Aim and Scope Perfluorooctane sulfonate (PFOS; C8F17SO3-) is a fully fluorinated organic compound which has been manufactured for decades and was used widely in industrial and commercial products. The recent toxicological knowledge of PFOS mainly concerns mono-substance exposures of PFOS to biological systems, leaving the potential interactive effects of PFOS with other compounds as an area where understanding is significantly lacking. However, a recent study, reported the potential of PFOS to enhance the toxicity of two compounds by increasing cell membrane permeability. This is of particular concern since PFOS has been reported to be widely distributed in the environment where contaminants are known to occur in complex mixtures. In this study, PFOS was evaluated alone and in combination with cyclophosphamide (CPP) to investigate whether a presence of PFOS leads to an increased genotoxic potential of CPP towards hamster lung V79 cells. Genotoxicity was investigated using the micronucleus (MN) assay according to the recent draft ISO/DIS 21427-2 method. PFOS alone demonstrated no genotoxicity up to a concentration of 12.5 mg/L. However, PFOS combined with two different concentrations of CPP, with metabolic activation, caused a significant increase in the number of micronucleated cells compared to treatments with CPP only. These results provide a first indication that PFOS has the potential to enhance the genotoxic action of CPP towards V79 cells, suggesting that together with the alterations in cell membrane properties shown previously, that genotoxicity of complex mixtures may be increased significantly by changes in chemical uptake. Together with an earlier study performed by the own working group it can be concluded that PFOS alone is not genotoxic in this bioassay using V79 cells up to 12.5 mg/L, but that further investigations are needed to assess the potential interaction between PFOS and other substances, in particular regarding the impact of membrane alterations on the uptake of toxic substances. Materials and Methods: - Results: - Discussion: - Conclusions: - Recommendations and Perspectives: -  相似文献   

17.
Ming Han  Zhen Guo  Guangke Li  Nan Sang 《Chemosphere》2013,90(11):2737-2742
Nitrogen dioxide (NO2) is a ubiquitous reactive free-radical gas, which has been associated with momentary and chronic health effects. In the present study, comet, micronucleus (MN) and DNA–protein crosslinks (DPC) assays were used to investigate the genotoxicity following in vivo inhalation exposure of rats to NO2. The results show that inhalation exposure of rats to NO2 induced DNA strand breakage and the formation of DPC in the cells from various internal organs (brain, lung, liver, spleen, kidney and heart), as well as resulted in obvious increase of MN frequency in the bone marrow cells of rats. Furthermore, above genotoxic responses showed significant linear dose-dependent manners. These results implicate that NO2 is a genotoxic agent and these observations are informative for understanding the mechanisms of adverse effects of nitrogen dioxide.  相似文献   

18.
A number of in vitro and in vivo studies have determined that binary and complex mixtures may interact to produce a toxicity that could not be predicted based on the individual chemicals. The present study was conducted with a binary mixture of model compounds to investigate possible interactions affecting their mutagenicity. The compounds included Benzo[a]pyrene (BAP), a polycyclic aromatic hydrocarbon that is an indirect-acting mutagen of great environmental concern, and 2,4,6-Trinitrotoluene (TNT), a nitro-aromatic compound that is a direct-acting mutagen frequently found as a soil contaminant at munitions sites. This study indicated that a binary mixture of BAP and TNT failed to induce the positive mutagenic response in Salmonella typhimurium strain TA98 characteristic of either compound alone. Spectrofluorometric analysis of BAP, and kinetic analyses of 3HBAP uptake in the presence or absence of TNT using TA98 cells that were treated or untreated with activated rat liver microsomes were performed. In cells preloaded with BAP, cellular BAP fluorescence was rapidly suppressed in the presence of TNT. Mass spectroscopy of BAP and TNT mixtures revealed a number of products, believed to be the result of complexation and nitration, that may account for the antagonistic action of TNT on BAP-induced mutagenicity in TA98 cells. Further, kinetic studies indicated that TNT inhibited the incorporation of BAP into cells.  相似文献   

19.
The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L−1; 220 ng L−1; and 10 μg L−1).Cocaine caused significant (p < 0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects.  相似文献   

20.
Ennaceur S  Ridha D  Marcos R 《Chemosphere》2008,71(7):1335-1339
The possible genotoxic potential of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), which is a metabolite of dichlorobiphenyltrichloroetane (DDT), and hexachlorobenzene (HCB), which are organochlorine pesticides have been evaluated in vitro by using human lymphocytes as test system. Genetic damage was determined by scoring the frequency of micronuclei (MN) in primary lymphocyte cultures obtained from different donors. The results indicated that, under the experimental conditions used, the DDT metabolite DDE was able to induce significant increases in the frequency of micronucleated cells, which indicate a certain clastogenic and/or aneugenic potential. DDE was tested in the range of 10-80 mM, but the only concentration producing a significant genotoxic effect was 80 mM. On the other hand, HCB was unable to induce a significant increase in the MN frequency in the range of concentrations assayed, from 0.005 to 0.1mM. The selected concentrations of DDE and HCB were chosen according to their toxicity in cell blood cultures; higher concentrations reduced significantly cell proliferation and produced a low frequency of binucleated cells. In conclusion, the results indicate that a genotoxic risk is associated with the exposure to DDE at concentrations 80 mM and above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号