首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The anatase/schorl composites were prepared and employed for the photocatalytic discoloration of an azo dye, Methyl Orange (MO). X-ray diffraction results indicated that TiO2 existed in the form of anatase phase and no diffraction peaks of schorl could be observed for all the composite samples. Scanning electron micrographs showed that the particles of anatase were well deposited and dispersed on the surface of schorl. Photocatalytic experiments revealed that the anatase/schorl composites exhibited higher photocatalytic activity for MO discoloration than pure TiO2 and more than 90 % discoloration ratio could be obtained within 60 min UV irradiation when the sample containing 3 wt.% of schorl as TiO2 support was used. Then, the central composite design (CCD) under the response surface methodology (RSM) was employed for the experiment design and process optimization. The significance of a second-order polynomial model for predicting the optimal values of MO discoloration was evaluated by the analysis of variance (ANOVA) and 3D response surface plots for the interactions between two variables were constructed. Based on the model prediction, the optimum conditions for the photocatalytic discoloration of MO by TiO2/schorl composite were determined to be 15?×?10?3 mM MO initial concentration, 2.7 g/l photocatalyst dosage, solution pH 6.6 and 43 min reaction time, with a maximum MO discoloration ratio of 98.6 %. Finally, a discoloration ratio of 94.3 % was achieved for the real sample under the optimum conditions, which was very close to the predicted value, implying that RSM is a powerful and satisfactory strategy for the process optimization.  相似文献   

2.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

3.
The photocatalytic reduction of CO2 with H2O was investigated using Cu/TiO2 photocatalysts in aqueous solution. For this purpose, Cu/TiO2 photocatalysts (with 0.2, 0.9, 2, 4, and 6 wt.% of Cu) have been synthesized via sol-gel method. The photocatalysts were extensively characterized by means of inductively coupled plasma optical emission spectrometry (ICP-OES), N2 physisorption (BET), XRD, UV-vis DRS, FT-IR, Raman spectroscopy, TEM-EDX, and photoelectrochemical measurements. The as-prepared photocatalysts contain anatase as a major crystalline phase with a crystallite size around 13 nm. By increasing the amount of Cu, specific surface area and band gap energy decreased in addition to the formation of large agglomeration of CuO. Results revealed that the photocatalytic reduction of CO2 decreased in the presence of Cu/TiO2 in comparison to pure TiO2, which might be associated to the formation of CuO phase acting as a recombination center of generated electron-hole pair. Decreasing of photoactivity can also be connected with a very low position of conduction band of photocatalysts with high Cu content, which makes H2 production necessary for CO2 reduction more difficult.  相似文献   

4.
This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol–gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95 % removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.  相似文献   

5.
The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 μg l?1) and ZnO (7, 70, and 700 μg l?1) nanoparticles, as well as to a mixture of both (TiO2 1 μg l?1?+?ZnO 70 μg l?1) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 μg l?1 of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle—TiO2 10 μg l?1; brain—ZnO 7 and 700 μg l?1), and protein oxidative damage increased in the brain (ZnO 70 μg l?1) and gills (ZnO 70 μg l?1 and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.  相似文献   

6.
7.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

8.
Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.  相似文献   

9.
Kumar A  Pandey AK  Singh SS  Shanker R  Dhawan A 《Chemosphere》2011,83(8):1124-1132
Extensive production and consumption of nanomaterials such as ZnO and TiO2 has increased their release and disposal into the environment. The accumulation of nanoparticles (NPs) in ecosystem is likely to pose threat to non-specific targets such as bacteria. The present study explored the effect of ZnO and TiO2 NPs in a model bacterium, Salmonella typhimurium. The uptake of ZnO and TiO2 bare NPs in nano range without agglomeration was observed in S. typhimurium. TEM analysis demonstrated the internalization and uniform distribution of NPs inside the cells. Flow cytometry data also demonstrates that both ZnO and TiO2 NPs were significantly internalized in the S. typhimurium cells in a concentration dependent manner. A significant increase in uptake was observed in the S. typhimurium treated even with 8 and 80 ng mL−1 of ZnO and TiO2 NPs with S9 after 60 min, possibly the formation of micelles or protein coat facilitated entry of NPs. These NPs exhibited weak mutagenic potential in S. typhimurium strains TA98, TA1537 and Escherichia coli (WP2uvrA) of Ames test underscoring the possible carcinogenic potential similar to certain mutagenic chemicals. Our study reiterates the need for re-evaluating environmental toxicity of ZnO and TiO2 NPs presumably considered safe in environment.  相似文献   

10.

Introduction

TiO2 anatase nanoplates and hollow microspheres were fabricated by a solvothermal?Chydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals.

Methods

These different morphological structures of TiO2 anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal?Chydrothermal process.

Results and discussion

After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO2 anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO2 anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO2 anatase structures. All TiO2 anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference.

Conclusion

The fluoride free TiO2 anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO2 and NO3 ?.  相似文献   

11.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

12.
TiO2-supported activated carbon felts (TiO2–ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2–ACFTs with 29–35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2–ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m2/g, respectively, whereas the TiO2–ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m2/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2–ACFT samples under UV light.  相似文献   

13.
In the present study, the photocatalytic degradation of Reactive Red 195 (RR195) from aqueous samples under UV-A irradiation by using anatase/brookite TiO2 (A/B TiO2) mesoporous nanoparticles has been investigated. Batch experiments were conducted to study the effects of the main parameters affecting the photocatalytic process. The effects and interactions of most influenced parameters, such as substrate concentration and catalyst load, were evaluated and optimized by using a central composite design model and a response surface methodology. The results indicated that the dye degradation efficiency in the experimental domain investigated was mainly affected by the tested variables, as well as their interaction effects. Analysis of variance showed a high coefficient of determination value (R 2?=?0.9947), thus ensuring a satisfactory adjustment of the first-order regression model (2FI model) with the experimental data. The obtained results also indicate that catalyst loading plays an important role in determining the removal efficiency of RR195 attributable to both photodegradation and adsorption process. Under optimal conditions (initial dye concentration (50 mg/L) and catalyst loading (2,000 mg/L), A/B TiO2 showed similar removal efficiency compared to that of commercial titania (Degussa P25). Also, at these conditions, complete degradation of RR195 can be achieved by both catalysts within 15 min under UV-A irradiation. The experiments demonstrated that dye removal on the prepared A/B TiO2 was facilitated by the synergistic effects between adsorption and photocatalysis. Photocatalytic mineralization of RR195 was monitored by total organic carbon. The recycling experiments confirmed the stability of the catalyst.  相似文献   

14.
The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO2 nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33?±?2 °C). Degradation products during the treatment were identified by gas chromatography–mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min?1), the highest degradation rate is obtained in the presence of TiO2 nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO2, in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO2 nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.  相似文献   

15.
Virus contamination in wastewater is usually accompanied by the existence of various bacteria. Nanoparticles (NPs) have been shown to efficiently remove virus. In this study, bacterial cells, supernatants, and cultures were harvested separately from three strains at the culture ages of 6 and 24 h, corresponding to the log and stationary phases, respectively. The aim is to investigate how their presence affects virus adsorption on the three Fe and Al oxide NPs (α-Fe2O3, γ-Fe2O3-B, and Al2O3) and how these effects change with bacterial growth phase. Bacteriophage phiX174 was used as a virus model. Results showed that bacterial cells, supernatants, and cultures harvested at 6 h generally reduced virus adsorption by an average of 0.75?±?0.84, 7.7?±?9.0, and 10.3?±?8.6 %, respectively, while those harvested at 24 h reduced virus adsorption by an average of 2.1?±?0.93, 21.5?±?6.6, and 24.6?±?6.9 %, respectively. Among the NPs, α-Fe2O3 showed more sensitivity to bacteria than the other two, probably because of its relatively higher value of point of zero charge. It was found that cell-induced and supernatant-induced reductions were combined to achieve added results, in which the supernatants contributed much more than the cells, implying that the bacterial exudates might be more crucial in the reduced virus adsorption than the bacterial cells. These results strongly demonstrated that the bacteria-induced reduction in virus adsorption became more significant with culture age. It is suggested that studies conducted in the absence of bacteria may not accurately evaluate the potential of virus removal efficiency of the NPs in bacteria-containing environments.  相似文献   

16.
This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO2 that is doped with Cu2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced.

Implications: The CuO-doped anatase TiO2 powder was successfully synthesized in this study by a sol–gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.  相似文献   


17.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

18.
In the present study, an activated charcoal (AC) plate was prepared by physical activation method. Its surface was coated with TiO2 nanoparticles by electrophoretic deposition (EPD) method. The average crystallite size of TiO2 nanoparticles was determined approximately 28 nm. The nature of prepared electrode was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area measurement before and after immobilization. The electrosorption and photocatalytic one-stage combined process was investigated in degradation of Lanasol Red 5B (LR5B), and the effect of dye concentration, electrolyte concentration, pH, voltage, and contact time was optimized and modeled using response surface methodology (RSM) approach. The dye concentration of 30 mg L?1, Na2SO4 concentration of 4.38 g L?1, pH of 4, voltage of 250 mV, and contact time of 120 min were determined as optimum conditions. Decolorization efficiency increased in combined process to 85.65 % at optimum conditions compared to 66.03 % in TiO2/AC photocatalytic, 20.09 % in TiO2/AC electrosorption, and 1.91 % in AC photocatalytic processes.  相似文献   

19.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

20.
The influences of HCO3 ?, Cl?, and other components on the UV/TiO2 degradation of the antineoplastic agents ifosfamide (IFO) and cyclophosphamide (CP) were studied in this work. The results indicated that the presence of HCO3 ?, Cl?, NO3 ?, and SO4 2? in water bodies resulted in lower degradation efficiencies. The half-lives of IFO and CP were 1.2 and 1.1 min and increased 2.3–7.3 and 3.2–6.3 times, respectively, in the presence of the four anions (initial compound concentration = 100 μg/L, TiO2 loading =100 mg/L, anion concentration = 1000 mg/L, and pH = 8). Although the presence of HCO3 ? in the UV/TiO2/HCO3 ? system resulted in a lower degradation rate and less byproduct formation for IFO and CP, two newly identified byproducts, P11 (M.W. = 197) and P12 (M.W. = 101), were formed and detected, suggesting that additional pathways occurred during the reaction of ?CO3 ? in the system. The results also showed that ?CO3 ? likely induces a preferred ketonization pathway. Besides the inorganic anions HCO3 ?, Cl?, NO3 ?, and SO4 2?, the existence of dissolved organic matter in the water has a significant effect and inhibits CP degradation. Toxicity tests showed that higher toxicity occurred in the presence of HCO3 ? or Cl? during UV/TiO2 treatment and within 6 h of reaction time, implying that the effects of these two anions should not be ignored when photocatalytic treatment is applied to treat real wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号