首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
Eruption of blue-green algal blooms occurs frequently in eutrophic lakes and fish ponds, with associated unpleasant odor and horrid scums. In the present study, we conducted a pre-test experiment in 3 m3 outdoor concrete ponds to determine the optimum concentration of aluminum sulfate (alum) required for reduction of the cyanobacterial blooms without negative effect on fish growth. As a consequence, 10 mg L?1 alum was named as the optimum concentration that was applied in 1000 m3 earthen fish ponds. Obtained results showed that Secchi disc values significantly increased from 10 to 24 cm after 14 days of alum application. Alum-treated ponds showed a reduction in total phytoplankton counts by 94 and 96 % compared to the corresponding controls after 10 and 14 days, respectively. Abundance of blue-green algae in the treated ponds was decreased by 98 % compared to the corresponding control after 14 days of alum application. Consequently, dissolved oxygen, pH, total phosphorus, orthophosphate, and chlorophyll “a” content declined significantly. Our study revealed that using 10 mg L?1 of alum is an effective way to control cyanobacterial blooms in eutrophic waters, especially in fish ponds, without negative effect in water quality.  相似文献   

2.
Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha?1 month?1. In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p?=?0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.  相似文献   

3.
This study explored the optimisation of a method of extracting allelochemicals from Pistia stratiotes Linn., identified the optimal dose range for the allelochemicals’ anti-algal effect and investigated their impact on the growth of Microcystis aeruginosa, as well as the production and release of microcystin-LR (MC-LR). Based on measured changes in algal cell density and chlorophyll a (Chl-a) content, the allelochemicals were confirmed to have the strongest anti-algal effect with the lowest half-effect concentration of 65 mg L?1 when they were extracted using ethyl acetate as the extraction solvent, 1:20 g mL?1 as the extraction ratio and 1 h as the extraction time. The allelochemicals extracted from P. stratiotes using this optimal method exhibited the strongest inhibitory effect on the growth of algae when used within a dose range of 60–100 mg L?1; the relative inhibitory ratio reached 50–90 %, and Chl-a content reduced 50–75 % in algae cell cultures within 3–7 days. In addition, the extracted allelochemical compounds demonstrated no significant impact on the extracellular release of MC-LR during the culturing period. The amount of intracellular MC-LR per 106 algal cells increased depending on the increasing dose of allelochemicals from P. stratiotes after 7 days of culturing and maintained stability after 16 days. There was no increase in the total amount of MC-LR in the algal cell culture medium. Therefore, the application of allelochemicals from P. stratiotes to inhibit M. aeruginosa has a high degree of ecological safety and can be adopted in practical applications for treating water subjected to algae blooms because the treatment can effectively inhibit the proliferation of algal cells without increasing the release of cyanotoxin.  相似文献   

4.

The rapid development of coastal aquaculture in recent decades has led to excessive discharge of organic matter and nutrients into surrounding waters, which could result in eutrophication and potentially affect metal cycling. In our study, the influence of algal organic matter on metal accumulation was examined in three coastal sediment cores taken from a tropical region, Hainan Island, China. Overall, metal pollution adjacent to aquaculture ponds remained at low levels on the coast, except Zn, Cd, and Sn were moderately to highly enriched in the Dongjiao sediments. The δ13C values and the atomic C/N ratios indicated a major contribution of phytoplankton to sedimentary organic matter at the Dongjiao site. Moreover, both the algae-derived organic matter and effluent nitrogen were significantly associated with the enriched Zn, Cd, and Sn, suggesting that nutrient-induced phytoplankton growth and its organic matter may act as a “biological pump” to enhance the accumulation of metals. Wastewater treatment for aquaculture ponds should include the control of algal organic matter.

  相似文献   

5.
Soil organic matter (SOM) releasing with dissolved organic matter (DOM) formed in solution was confirmed in a sediment/water system, and the effects of SOM releasing on the sorption of phenanthrene on sediments were investigated. Inorganic salt (0–0.1 mol L?1 NaCl) was used to adjust SOM releasing, and two sediments were prepared, the raw sediment (S1) from Weihe River, Shann’xi, China, and the eluted sediments with and without DOM supernatant remained, termed as S2a and S2b, respectively. The FTIR and 1H NMR analysis indicate that the low molecular weight hydrophilic SOM fraction released prior to the high molecular weight hydrophobic fraction. As a response, phenanthrene sorption kinetics on S1 showed atypical and expressed as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption, thus a defined “sorption valley” occurred in kinetic curve. In all cases, partition dominates the sorption, and sorption capacity (Kd) ranked as S2b > S1 > S2a. Compared with the alterations of sediment characters, DOM solubilization produced by SOM releasing exhibited a greater inhibitory effect on sorption with a relative contribution of 0.67. Distribution coefficients (Kdoc) of PHE into DOM clusters were 2.10?×?104–4.18?×?104 L kg?1, however a threshold concentration of 6.83 mg L?1 existed in DOM solubilization. The study results will help to clarify PAHs transport and their biological fate in a sediment/water system.  相似文献   

6.
This report demonstrates that organic matter was an important factor in lake sediment 210Pbex dating. Sediment cores from lakes in central and western China with different-trophic levels were collected, and the 210Pbex activity and total organic carbon (TOC) were measured. The Rock-Eval pyrolysis technique was used to deconvolute TOC into free hydrocarbons (S1), thermally less-stable macromolecular organic matter (S2a), kerogen (S2b), and residual carbon (RC). The results show significant correlations between TOC and 210Pbex, particularly between S2a and 210Pbex, in all the sediment cores. This indicated that the algal-derived organic component S2a may play the most important role in controlling the distribution of 210Pbex. Scavenging by algal-derived organic matter may be the main mechanism. As chronology is the key to the understanding of pollution reconstruction and early diagenesis in sediments, more attention should be paid to the influence of organic matter on 210Pbex.  相似文献   

7.
The distribution and interactions of phytoplankton and 14 polychlorinated biphenyls (PCBs) were investigated using canonical correspondence analysis in autumn in the Qinhuai River, Nanjing, China. Concentrations of PCBs in water and algal samples ranged from 33.78 to 144.84 ng/L and from 0.21 to 19.66 ng/L (0.06 to 3.04 ng/mg biomass), respectively. The predominant residual species of PCBs in water samples were tri- through hexachlorobiphenyls, and the predominant residuals in algae were tri-, tetra-, and heptachlorobiphenyls. The degree of eutrophication affected phytoplankton composition and PCB bioaccumulation, and led to sample site- and algal species specificity of PCB residues in the study area. Chlorophyta, Bacillariophyta, and Euglenophyta had strong capacities to take up PCBs, whereas Cyanophyta was less involved in the transfer of these compounds. Bioaccumulation of PCBs by algae may be affected by water quality, chlorination, phytoplankton composition, and the structure of the PCBs and the algal cell walls.  相似文献   

8.
The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K2HPO4, MgSO4.7H2O, NH4Cl, CaCl2·2H2O, FeCl3 (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD5, COD, and TOC of treated wastewater from algal batch reactor were 20?±?7, 167?±?29, and 78?±?16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD5,COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day?1) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO–Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.  相似文献   

9.
Dissolved organic matter (DOM) in wastewater and reclaimed water is related to water quality, safety, and treatability. In this study, DOM was characterized through a fingerprint analysis method for DOM characterization using resin fractionation followed by size exclusion chromatography (SEC). Resin fractionation was used in the first step to divide the DOM in water samples into six resin fractions, namely, hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB), and hydrophilic neutrals (HIN). SEC analysis was then performed to separate each resin fraction into several (n) subfractions with different molecular weights (MW). Thus, the total DOM in the water sample was fractionated into 6n subfractions. After quantification of each subfraction by dissolved organic carbon (DOC), a fingerprint graph was constructed to express the distribution of DOM in the subfractions. The fingerprint analysis method was applied to a secondary effluent sample during ozonation. Ozonation (dose of 10 mg L?1) removed the DOC only by 8 % and reduced UV254 of the sample by 36 %. Fingerprint graphs also revealed that the resin fractions changed quite limitedly but transformation of subfractions occurred notably.  相似文献   

10.

Bioretention, also known as rain garden, allows stormwater to soak into the ground through a soil-based medium, leading to removal of particulate and dissolved pollutants and reduced peak flows. Although soil organic matter (SOM) is efficient at sorbing many pollutants, amending the bioretention medium with highly effective adsorbents has been proposed to optimize pollutant removal and extend bioretention lifetime. The aim of this research was to investigate whether soil amended with activated carbon produced from sewage sludge increases the efficiency to remove hydrophobic organic compounds frequently detected in stormwater, compared to non-amended soil. Three lab-scale columns (520 cm3) were packed with soil (bulk density 1.22 g/cm3); activated carbon (0.5% w/w) was added to two of the columns. During 28 days, synthetic stormwater—ultrapure water spiked with seven hydrophobic organic pollutants and dissolved organic matter in the form of humic acids—was passed through the column beds using upward flow (45 mm/h). Pollutant concentrations in effluent water (collected every 12 h) and polluted soils, as well as desorbed amounts of pollutants from soils were determined using GC-MS. Compared to SOM, the activated carbon exhibited a significantly higher adsorption capacity for tested pollutants. The amended soil was most efficient for removing moderately hydrophobic compounds (log K ow 4.0–4.4): as little as 0.5% (w/w), carbon addition may extend bioretention medium lifetime by approximately 10–20 years before saturation of these pollutants occurs. The column tests also indicated that released SOM sorb onto activated carbon, which may lead to early saturation of sorption sites on the carbon surface. The desorption test revealed that the pollutants are generally strongly sorbed to the soil particles, indicating low bioavailability and limited biodegradation.

  相似文献   

11.
Conversion of dissolved P by ferric sulfate into a particulate form sparingly available to algae was studied in 15 ditches in Finland using stand-alone dispensers for ferric sulfate administration. Ferric sulfate typically converted 60–70 % of dissolved P into iron-associated form, a process which required 250–650 kg per kg dissolved P. Mean cost was 160 EUR per kg P converted (range 20–400 EUR kg?1). The costs were lowest at sites characterized by high dissolved P concentrations and small catchment area. At best, the treatment was efficient and cost-effective, but to limit the costs and the risks, ferric sulfate dispensers should only be installed in small critical source areas.  相似文献   

12.
Lakes Dianchi (DC) and Bosten (BST) were determined to be at different stages of eutrophication, by use of total organic carbon content, bulk carbon isotopic composition, bulk nitrogen isotopic composition, and bound saturated fatty acid (BSFA) concentrations in sediment cores. A rapid increase in the supply of organic matter (OM) to DC began after the 1950s, while the environment and trophic status of BST remained constant as indicated by characteristics of OM input to sediments. The BSFA ratios of nC14?+?nC16?+?nC18/nC24?+?nC26?+?nC28 increase upward from 7 to 13 in the DC core, which are significantly greater than those from BST (2 to 3). This result is consistent with algae or bacteria being the dominant contribution of the OM increase induced by eutrophication in DC. The positive shift of nC16 compound-specific δ 13C in the upper section might be an indicator of excess algal productivity, which was observed in the two lakes. The positive shifts of compound-specific δ 13C of other BSFAs were also observed in the upper section of the core only from DC. The observed trends of compound-specific δ13C of BSFA originated from different sources became more consistent, which reflected the intensified eutrophication had profoundly affected production and preservation of OM in DC. The results observed for BST indicated that accumulation of algae did not affect the entire aquatic ecosystem until now.  相似文献   

13.

This study investigated organic matter (OM) and nutrient removal efficiency of mixed algal species from slaughterhouse wastewater (SWW) by using photo-bioreactor. For this purpose, different dilution multiples of 10, 4, and 2 were applied to the SWW, and pure wastewater was finally used for algal cultivation. OM and nutrient removal performance in an algal photo-bioreactor were severely affected by the dilution ratio. After 7 days of cultivation, the highest removal percentages of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) were 89.6, 70.2, and 96.2 %, respectively. Furthermore, the changes in eukaryotic algae and cyanobacterial species in the algal photo-bioreactors were investigated using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results indicated that cyanobacterial species were more efficient than eukaryotic species in removing nutrients from the SWW. This study suggests that mixed algal photo-bioreactors could be used efficiently in the treatment of SWW.

  相似文献   

14.
An antialgal bacterium, Streptomyces sp. HJC-D1, was applied for the biodegradation of cyanobacterium Microcystis aeruginosa, and the isolation and characterization of dissolved organic matter (DOM) fractions in antialgal products were studied. Results showed the the growth of M. aeruginosa was significantly inhibited by the cell-free filtrate of Streptomyces sp. HJC-D1 with the growth inhibition of 86?±?7 %. The antialgal products were divided using resin adsorbents into the hydrophilic fraction (HPI), hydrophobic acid (HPO-A), transphilic acid (TPI-A), hydrophobic neutral and transphilic neutral, and then the five fractions were analyzed by the 3-D fluorescence spectroscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The results indicated that the HPI component was the most abundant DOM fraction in the antialgal products, and its concentration was increased with the increase of cell-free filtrate concentration. The fluorescence peak location and intensity analysis showed that the protein-, fulvic-, and humic-like substances were dominant in the HPI, HPO-A, and TPI-A fractions, and intensities of the relevant fluorescence peaks were stronger in the experimental groups than those of the control groups. It was also found that the number-average molecular weight of DOM fractions ranged from 245 to 1,452 g mol?1, and thereinto organic acids such as HPO-A and TPI-A exhibited lower molecular weights.  相似文献   

15.
Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.  相似文献   

16.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

17.
Bioavailability of dissolved organic nitrogen in treated effluents.   总被引:2,自引:0,他引:2  
The research objective was to assess dissolved organic nitrogen (DON) bioavailability in wastewater effluents from a pilot-scale nitrification plant and a laboratory-scale total nitrogen (TN) removal plant. The DON bioavailability was assessed using a 14-day bioassay protocol containing bacterial and algal inocula. Nitrogen species, dissolved organic carbon, chlorophyll a, and biomass (as total suspended solids and culturable cell counts) concentrations were measured to assess DON bioavailability. The results showed an increase in algal chlorophyll a concentration, with a concurrent increase in algal biomass over time; increased bacterial counts and a decrease in DON concentration over time; and increased carbon-to-nitrogen ratio at the end of the 14-day bioassay, indicating effluent DON bioavailability to algae and bacteria. Approximately 18 to 61% of the initial DON in low-total-nitrogen wastewater effluent (TN = 4 to 5 mg/L) sample was bioavailable. The results show that bacteria and algae uptake and release DON during their growth.  相似文献   

18.
This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation–magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe3O4). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L?1). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic–coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.  相似文献   

19.
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L?1) and one concentration of glucose (20 mg L?1) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18–6.35 mm), coarse gravel (12.70–25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%–85.31%) were found when using fine gravel (3.18–6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18–6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.  相似文献   

20.
The interaction of natural organic matter with phytoplankton communities in freshwater ecosystems is an intensively studied subject matter. Previous studies showed that apparently plant-derived phenols were able to inhibit algal and cyanobacterial growth. Furthermore, it was also assumed that humic substances (HS), which comprise the major part of dissolved organic carbon in freshwater ecosystems, directly interact with freshwater phototrophs. For example, quinoid building blocks of HS were thought to be algicidal. To identify key environmental variable for the toxic action of potential quinone algicides, we tested the toxicity of hydroquinone (HQ) to different eukaryotic and prokaryotic freshwater phototrophs in terms of growth performance and investigated also the effect of HQ oxidation at different pH values on its algicidal potential. It was shown that cyanobacterial species were much more susceptible to hydroquinone than coccal green algal species were, with Microcystis aeruginosa being the most sensitive species by far. In addition, it was obvious that the aging of hydroquinone-stock solution at pH 11 led to polymerization and, by this process, to a total loss of toxicity; whereas the algicidal potential sustained if the polyphenol was kept at pH 7. Since most lakes with heavy blooms of phototrophs possess pH values clearly above 7.0, it is questionable, if polyphenols in general and quinones in particular are the effective chemicals and if litter and straw leachates are applied as means to combat algal and cyanobacterial blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号