首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m?3 h?1) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.  相似文献   

2.
This study investigated whether respiratory syncytial virus (RSV) infection in children was associated with ambient temperature and air pollutants in Hangzhou, China. A distributed lag non-linear model (DLNM) was used to estimate the effects of daily meteorological data and air pollutants on the incidence of RSV infection among children. A total of 3650 childhood RSV infection cases were included in the study. The highest air pollutant concentrations were in January to May and October to December during the year. The yearly RSV-positive rate was 10.0 % among children with an average age of 4.3 months. The highest RSV-positive rate occurred among patients 0 to 3 months old. Children under 6.5 months old accounted for 80 % of the total patients infected by RSV. A negative correlation was found between ambient temperature and RSV infection, and it was strongest with minimum ambient temperature (r = ?0.804, P < 0.001). There was a positive correlation between the infection rate and the particulate matter (PM) 2.5 (r = 0.446, P < 0.001), PM10 (r = 0.397, P < 0.001), SO2 (r = 0.389, P < 0.001), NO2 (r = 0.365, P < 0.001) and CO (r = 0.532, P < 0.001). The current study suggested that temperature was an important factor associated with RSV infection among children in Hangzhou. Air pollutants significantly increased the risk of RSV infection with dosage, lag and cumulative effects.  相似文献   

3.
The proximate composition and mineral contents of Stichopus horrens and Holothuria arenicola from Chabahar Bay were analyzed and investigated. During the present study, we aimed to demonstrate the nutritive value. The approximate percent composition of moisture, protein, fat, and ash were 92.8, 3.47, 0.4, and 3.33% in S. horrens and 93, 4.4, 0.6, and 2% in H. arenicola, respectively. Atomic absorption spectrophotometry of the ashes indicated the body wall of two species of sea cucumbers contained higher amounts of both macro minerals (92.5 mg/100 g Mg in S. horrens and 115 mg/100 g Mg in H. arenicola; 106.25 mg/100 g Ca in S. horrens and 83.25 mg/100 g Ca in H. arenicola) and trace elements (521.781 mg/100 g Fe in S. horrens; 60.354 mg/100 g Fe in H. arenicola, and 0.096 mg/100 g Zn in S. horrens; 0.04 mg/100 g Zn in H. arenicola). For both species, there were high content of protein and essential mineral. Also, they have low content of fat in the body wall of two species in the experiment.  相似文献   

4.
Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg?1) and other metals (e.g., 48.3 mg Cu kg?1, 2370 mg Zn kg?1, 44.9 mg Pb kg?1, and 0.59 mg Cd kg?1). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg?1), Aster subulatus (310 mg Cr kg?1), and Brassica chinensis (300 mg Cr kg?1), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.  相似文献   

5.
We here report the first sign of amphibian recovery after a strong decline due to acidic precipitation over many decades and peaking around 1980–90. In 2010, the pH level of ponds and small lakes in two heavily acidified areas in southwestern Scandinavia (Aust-Agder and Østfold in Norway) had risen significantly at an (arithmetic) average of 0.14 since 1988–89. Parallel with the general rise in pH, amphibians (Rana temporaria, R. arvalis, Bufo bufo, Lissotriton vulgaris, and Triturus cristatus) had become significantly more common: the frequency of amphibian localities rose from 33% to 49% (n = 115), and the average number of amphibian species per locality had risen from 0.51 to 0.88. In two other (reference) areas, one with better buffering capacity (Telemark, n = 21) and the other with much less input of acidic precipitation (Nord-Trøndelag, n = 106), there were no significant changes in pH or amphibians.  相似文献   

6.
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m2/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.  相似文献   

7.
8.
This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.  相似文献   

9.
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for CrVI reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.  相似文献   

10.
Vegetables play an important role in the human diet, and the transfer of toxic contaminants from the soil to plants has been little studied for most tree species and their edible portions. In an area affected by hexachlorocyclohexane (HCH) contamination, in the Sacco River Valley (central Italy), measurements of β- and α-HCH isomers were made on different parts of two tree species: Juglans regia and Prunus spinosa. Concentrations were analysed in roots, branches, leaves, fruits, and seeds. A spatial evaluation of the results highlighted an inverse association of contamination with distance from the river, which is the main route of transport in the environment. Results in J. regia showed decreasing values in this order: branches > leaves > husks > nutmeat. Results in P. spinosa showed decreasing values in the following order: branches > leaves > fruits. In J. regia, nutmeat values were all below limit of detection (LOD, 0.0005 mg/kg), except in one case in which a very low concentration of β-HCH was found (0.006 mg/Kg), compliant with maximum residue limits (MRLs). The ability of J. regia to store large quantities of β-HCH in wooden and leafy parts but not in edible kernels makes this plant a potential and precious tool in remediation and economical reconversion of polluted areas. It is also valuable for food and wood manufacturing.  相似文献   

11.
Insecticides are widely sprayed in modern agriculture for ensuring the crop yield, which could also lead to contamination and insecticide residue in soils. Paichongding (IPP) is a novel neonicotinoid insecticide and was developed recently in China. Soil bacterial community, diversity, and community composition vary widely depending on environmental factors. As for now, little is known about bacterial species thriving, bacterial community diversity, and structure in IPP-spraying soils. In present study, IPP degradation in yellow loam and Huangshi soils was investigated, and bacterial communities and diversity were examined in soil without IPP spray and with IPP spray through pyrosequencing of 16S ribosomal RNA (rRNA) gene amplicons. The degradation ratio of IPP at 60 days after treatment (DAT) reached 51.22 and 34.01 % in yellow loam and Huangshi soil, respectively. A higher richness of operational taxonomic units (OTUs) was found in yellow loam soil (867 OTUs) and Huangshi soil (762 OTUs) without IPP spray while OUTs were relatively low in IPP-spraying soils. The community composition also differed both in phyla and genus level between these two environmental conditions. Proteobacteria, Firmicutes, Planctomycetes, Chloroflexi, Armatimonadetes, and Chlorobi were stimulated to increase after IPP application, while IPP inhibited the phyla of Bacteroidetes, Actinobacteria, and Acidobacteria.  相似文献   

12.
In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical remediation of waste. Therefore on an industrial scale, the sewage is more preferable. Because the results obtained in the laboratory demonstrated both sewage and glucose-enriched nutrient medium are equally efficient for algae cultivation with just a slight difference. Essentially, the sewage is cost effective and easily available in large quantities compared to glucose.  相似文献   

13.
In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary’s chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.  相似文献   

14.
The wintertime concentrations and diel cycles of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to atmospheric particulate matter with aerodynamic diameter lesser than 10 μm were determined at the biggest student residence in Algeria located in Bab-Ezzouar, 15 km southeast from Algiers city area. Samplings were carried out from December 2009 to March 2010, and organic compounds were characterized using gas chromatography coupled with mass spectrometric detection. Volatile PAHs were also monitored inside some student residence rooms in order to evaluate the impact of indoor air pollution to student health. For the sake of comparison, aerial concentrations of n-alkanes and PAHs were determined in parallel in the Oued Smar industrial zone and two suburban areas, all located in Algiers. Total concentrations recorded in CUB1 student residence ranged from 101 to 204 ng?m?3 for n-alkanes and from 8 to 87 ng?m?3 for PAHs. Diel cycles have shown that, while concentrations of n-alkanes peaked at morning and afternoon–evening and dropped at night, those of PAHs exhibited higher levels at morning and night and lower levels at afternoon–evening, likely due to the reactivity of some PAHs. As expected, the indoor levels of PAHs were larger than in the outdoor of the student residence and were of serious health concern. Overall, the concentrations of n-alkanes and PAHs were as high as those observed in the industrial zone and higher than the two suburban sites.  相似文献   

15.
Decabromodiphenyl ether (BDE-209) is a brominated flame retardant and a priority contaminant. Currently, little information is available about its significance in the environment, specifically about its susceptibility to aerobic biotransformation at low temperature. In this work, five phylogenetically diverse BDE-209-degrading bacterial strains were isolated from river sediments of northern China. These strains were distributed among four different genera—Acinetobacter, Pseudomonas, Bacillus and Staphylococcus. All five isolates were capable of growing on BDE-209, among which two isolates show better growth. By detailed morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis, the two strains were identified and named as Staphylococcus haemolyticus LY1 and Bacillus pumilus LY2. The two bacteria can grow in mineral salt medium containing BDE-209 substrate across the temperatures ranging from 2.5 to 35 °C, with an optimum temperature of 25 °C which could be considered as psychrotrophs accordingly. The degradation experiment showed that more than 70.6 and 85.5 % of 0.5 mg/L BDE-209 were degraded and the highest mineralization efficiencies of 29.8 and 39.2 % were achieved for 0.5 mg/L BDE-209 by S. haemolyticus LY1 and B. pumilus LY2, respectively. To the best of our knowledge, this is the first demonstration for the biodegradation of BDE-209 by two psychrotrophic bacteria isolated from environment.  相似文献   

16.
Seaweeds have been used as a source of traditional medicine worldwide for the treatment of various ailments, mainly due to their ability to quench the free radicals. The present study aims at evaluating the protective effect of methanolic extract of Gelidiella acerosa, an edible red seaweed against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity in peripheral blood mononuclear cells (PBMC). For evaluating the protective effect of G. acerosa, PBMC were divided into four groups: vehicle control, TCDD (10 nM), TCDD?+?G. acerosa (300 μg/ml), and G. acerosa alone treated. Scavenging of intracellular reactive oxygen species (ROS) induced by TCDD was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Alterations at macromolecular level were quantified through lipid peroxidation (LPO) level, protein carbonyl content (PCC) level, and comet assay. The cellular morphology upon TCDD toxicity and G. acerosa treatment was obtained by light microscopy and histopathological studies. The chemical composition present in the methanolic extract of G. acerosa was determined by gas chromatography-mass spectrometry (GC-MS) analysis. The results reveal that 10 nM TCDD caused significant (P?<?0.05) reduction in cell viability (94.10?±?0.99), and treatment with 300 μg/ml extract increased the cell viability (99.24?±?0.69). TCDD treatment resulted in a significant increase in the production of ROS, LPO (114?±?0.09), and PCC (15.13?±?1.53) compared to the control, whereas co-treatment with G. acerosa significantly (P?<?0.05) mitigated the effects. Further, G. acerosa significantly (P?<?0.05) prevented TCDD-induced genotoxicity and cell damage. GC-MS analysis showed the presence of n-hexadecanoic acid (retention time (RT) 13.15), cholesterol (RT 28.80), α-d-glucopyranose, 4-O-α-d-galactopyranosyl (RT 20.01), and azulene (RT 4.20). The findings suggest that G. acerosa has a strong protective ability against TCDD-induced cytotoxicity, oxidative stress, and DNA damage.  相似文献   

17.
The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.  相似文献   

18.
Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol.
Graphical abstract
  相似文献   

19.

Introduction

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) receiving untreated recirculating aquaculture system wastewater.

Materials and methods

The hydraulic loading rate was 3.75 cm day?1. Many of the monitored water quality parameters (biological oxygen demand [BOD], total suspended solids [TSS], total phosphorus [TP], total nitrogen [TN], total ammoniacal nitrogen [TAN], nitrate nitrogen [NO3], and Escherichia coli) were removed efficiently by the CWs, to the extent that the CW effluent was suitable for use on human food crops grown for raw produce consumption under Victorian state regulations and also suitable for reuse within aquaculture systems.

Results and discussion

The BOD, TSS, TP, TN, TAN, and E. coli removal in the A. donax and P. australis beds was 94%, 67%, 96%, 97%, 99.6%, and effectively 100% and 95%, 87%, 95%, 98%, 99.7%, and effectively 100%, respectively, with no significant difference (p?>?0.007) in performance between the A. donax and P. australis CWs. In this study, as expected, the aboveground yield of A. donax top growth (stems + leaves) (15.0?±?3.4 kg wet weight) was considerably more than the P. australis beds (7.4?±?2.8 kg wet weight). The standing crop produced in this short (14-week) trial equates to an estimated 125 and 77 t ?ha?1 year?1 biomass (dry weight) for A. donax and P. australis, respectively (assuming that plant growth is similar across a 250-day (September–April) growing season and a single-cut, annual harvest).

Conclusion

The similarity of the performance of the A. donax- and P. australis-planted beds indicates that either may be used in horizontal subsurface flow wetlands treating aquaculture wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilization of the energy-rich biomass produced.
  相似文献   

20.
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (~10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号