首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main objective of this investigation was to monitor concentrations of seven metals (Cd, Pb, Ni, Mo, Cu, Zn, and Cr) in the fruits, leaves, stem, and roots of Capsicum annuum L. (cv. Xcatic) plants grown under four soil management practices: yard waste (YW), sewage sludge (SS), chicken manure (CM), and no-much (NM) bare soil. Elemental analyses were conducted using inductively coupled plasma mass spectrometer. Pb and Cd concentrations in soil amended with YW, SS, and CM were not significantly different (P < 0.05) compared to NM soil, whereas Mo and Cu concentrations were significantly greater in YW compared to SS, CM, and NM treatments. Concentrations of Cd in the fruits of plants grown in NM soil were greater compared to the fruits of plants grown in other treatments. Total Ni concentration (sum of Ni in all plant parts) in plants grown in NM bare soil was greater than in plants grown in SS-, YW-, and CM-amended soils. Values of the bioaccumulation factor indicated that pepper fruits of plants grown in YW, SS, and CM did not show any tendency to accumulate Pb, Cr, and Ni in their edible fruits.  相似文献   

2.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

3.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

4.
The effect of soil properties on trace element (TE) extraction by the Fish Creek willow cultivar was assessed in a 4-month greenhouse experiment with two contrasted soils and two mycorrhizal treatments (Rhizophagus irregularis and natives). Aboveground tissues represented more than 82 % of the willow biomass and were the major sink for TE. Cadmium and Zn were concentrated in leaves, while As, Cu, Ni, and Pb were mostly found in roots. Willow bioconcentration ratios were below 0.20 for As, Cu, Ni, and Pb and reached 10.0 for Cd and 1.97 for Zn. More significant differences in willow biomass, TE concentrations, and contents were recorded between soil types than between mycorrhizal treatments. A slight significant increase in Cu extraction by willow in symbiosis with Rhizophagus irregularis was observed and was linked to increased shoot biomass. Significant regression models between TE in willow and soil properties were found in leaves (As, Ni), shoots (As, Cd, Cu, Ni), and roots (As, Cu, Pb). Most of the explanation was shared between soil water-soluble TE and fertility variables, indicating that TE phytoextraction is related to soil properties. Managing interactions between TE and major nutrients in soil appeared as a key to improve TE phytoextraction by willows.  相似文献   

5.
Crop samples harvested and stored from three long-term agricultural experiments started in the 1840-1850s at Rothamsted Experimental Station (UK) have been analysed recently for Cd. Increased Cd burden in the soils of the experiments, which have had a range of treatments, originates mainly from atmospheric deposition. Soils treated with farmyard manure (FYM) or, in some cases, applications of phosphate fertilisers, have increased Cd levels. Herbage, wheat and barley grain from the three experiments were analysed by neutron activation analysis (NAA) and graphite furnace atomic absorption spectrometry (GFAAS). Samples were bulked for groups of years between 1860 and 1986, from variously treated plots in each experiment (control or 'nil' treatment, P-fertilised, FYM-amended, NPK-fertilised-limed and unlimed). There were marked differences in Cd concentrations between treatments. For example, uptake of Cd into herbage was greater where P fertiliser had been applied than not, and was greater from unlimed than limed soils. Offtake of Cd (mg ha(-1) year(-1)) was affected by large differences in yield and probably also by other factors. These include changes in botanical composition in the permanent grassland experiment; cultivar changes in the wheat and barley experiments; changes in soil organic matter and soil pH of some plots; changes in atmospheric deposition of Cd through time. All of these potentially confounding factors make the interpretation of results complicated. It is concluded, however, that, with one exception, there is little evidence of a long-term increase in crop Cd concentrations at Rothamsted.  相似文献   

6.
Land use in east China tends to change from paddy rice to vegetables or other high-value cash crops, resulting in high input rates of organic manures and increased risk of contamination with both heavy metals (HMs) and antibiotics. This investigation was conducted to determine the accumulation, distribution and risks of HMs and tetracyclines (TCs) in surface soils and profiles receiving different amounts of farmyard manure. Soil samples collected from suburbs of Hangzhou city, Zhejiang province were introduced to represent three types of land use change from paddy rice to asparagus production, vineyards and field mustard cultivation, and divided into two portions, one of which was air-dried and sieved through 2-, 0.3- and 0.149-mm nylon mesh for determination of pH and heavy metals. The other portion was frozen at ?20 °C, freeze-dried and sieved through a 0.3-mm nylon mesh for tetracyline determination. HM and TC concentrations in surface soils of 14-year-old mustard fields were the highest with total Cu, Zn, Cd and ∑TCs of 50.5, 196, 1.03 mg?kg?1 and 22.9 μg?kg?1, respectively, on average. The total Cu sequence was field mustard?>?vineyards?>?asparagus when duration of land use change was considered; oxytetracycline (OTC) and doxycycline were dominant in soils used for asparagus production; OTC was dominant in vineyards and chlortetracycline (CTC) was dominant in mustard soils. There were positive pollution relationships among Cu, Zn and ∑TCs, especially between Cu and Zn or Cu and ∑TCs. Repeated and excessive application of manures from intensive farming systems may produce combined contamination with HMs and TCs which were found in the top 20 cm of the arable soil profiles and also extended to 20–40 cm depth. Increasing manure application rate and cultivation time led to continuing increases in residue concentrations and movement down the soil profile.  相似文献   

7.
Use of sequential extraction to assess metal partitioning in soils   总被引:12,自引:0,他引:12  
The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles.  相似文献   

8.
Bose S  Bhattacharyya AK 《Chemosphere》2008,70(7):1264-1272
The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.  相似文献   

9.
An increase in the concentration of Cu, Zn, Cr and Mn, and a decrease in the activities of aspartate amino transferase, alanine amino transferase and peroxidase were observed in the different fractions of wheat plants, following raw and differentially diluted (66% and 50%) sewage irrigation and dry primary settled sewage-sludge amendments of soils. The grain enrichment efficiencies for Cu, Zn and Mn were significantly low under all experimental conditions. On the other hand, the grain enrichment efficiency for Cr was low under all sewage irrigation conditions only. Except in the earheads of wheat plants from sludge-amended soil, catalase activities were significantly low in roots, stems and earheads of wheat plants, under all other treatment conditions investigated. The decrease in the proteinase activity was statistically significant in roots and earheads of sewage-irrigated plants; the activity in the stem was low following irrigation with raw and 66% sewage only. Proteinase activity was also significantly low in all fractions of wheat plants harvested from soil amended with 20 tonnes of sludge per hectare. The observed results appear to be due to an overall decrease in the metabolic status of the plants following sewage irrigation and sludge amendment of soils. Grain yields, however, were not reduced despite this metabolic effect.  相似文献   

10.
Amending soils with compost may lead to accumulation of metals and their fractions at various concentrations in the soil profile. The objectives of this study were to determine 1) the accumulation of Cu, Fe, Mn, and Zn with depth and 2) the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each metal in soils amended with MSW compost, co-compost, biosolids compost and inorganic fertilizer (as control). Total concentrations of Cu, Fe, Mn and Zn were concentrated in the 0-22 cm soil layer and scant in the rock layer. These metals were in the decreasing order of Fe > Mn > Zn > or = Cu. Copper, Fe, and Zn were predominantly in the residual form followed by fractions associated with Fe-Mn oxides, carbonate, organic, exchangeable and water soluble in all treatments except MSW compost amended soil where the organic fraction was higher than the carbonate fraction. In fertilizer, co-compost and biosolids compost treated soils Mn concentrated mainly in the Fe-Mn oxides form followed by residual, carbonate, and organic forms whereas, in MSW compost treated soil the same pattern occurred except that Mn organic fraction was higher than that in the carbonate form. The MSW compost has a greater potential to be used as a soil amendment to supply plants with Cu, Mn and Zn than other treatments in calcareous soils of south Florida.  相似文献   

11.
Feng MH  Shan XQ  Zhang SZ  Wen B 《Chemosphere》2005,59(7):939-949
There is no method recognized as a universal approach for evaluation of bioavailability of heavy metals in soil. Based on the simulation of the rhizosphere soil conditions and integration of the combined effects of root-soil interactions as a whole, a rhizosphere-based method has been proposed. Wet fresh rhizosphere soil was extracted by low-molecular-weight organic acids (LMWOAs) to fractionate metal fractions of soil pools, which were then correlated with the metal contents of wheat roots and shoots. The rhizosphere-based method was compared with other one-step extraction methods using DTPA, EDTA, CaCl2, and NaNO3 as extractants and the first step of the Community Bureau of Reference (BCR) method. Simple correlation and stepwise multiple regression analysis were used for the comparison. Simple correlation indicated that the extractable Cu, Zn, Cr, and Cd of soils by the rhizosphere-based method were significantly correlated with the metal contents of wheat roots. For DTPA, BCR1 and EDTA methods there was a relatively poor correlation between the extractable Cu, Zn and Cd of soil and metal contents of wheat roots. Stepwise multiple regression analysis revealed that the equation of the rhizosphere-based method was the simplest one, and no soil properties variables needed to be added. In contrast, the equations of other one-step extraction methods were more complicated, and soil properties variables needed to be entered. The most distinct feature of the rhizosphere-based method was that the recommended method was suitable for acidic, neutral and near alkaline soils. However, the DTPA and EDTA extraction methods were suitable for calcareous soils only-or-only for acidic soils. The CaCl2, and NaNO3 extraction methods were only suitable for exchangeable metals. In short, the rhizosphere-based method was the most robust approach for evaluation of bioavailability of heavy metals in soils to wheat.  相似文献   

12.
Field studies were conducted to investigate arsenic (As), copper (Cu), and zinc (Zn) contamination in agricultural soils and wheat crops at two areas in Huaibei, China. Area A is in the proximity of Shuoli coal mine. In area B, three coal mines and a coal cleaning plant were distributed. The potential health risk of As, Cu, and Zn exposure to the local inhabitants through consumption of wheat grains was also estimated. The results showed that significantly higher (p?<?0.05) concentrations of As, Cu, and Zn were found in soils collected from area B than in those from area A. Arsenic concentrations in wheat sampled from area A were negatively correlated with the distance from the coal mine (p?<?0.001). Concentrations of Cu and Zn in wheat seedlings and grains collected from area B were significantly higher (p?<?0.05) than in those collected from area A, with the exception of Zn in wheat seedlings. Concentrations of Cu and Zn in most wheat grain samples were above the permissible limits of Cu and Zn in edible plants set by the Food and Agriculture Organization/World Health Organization. The hazard index of aggregate risk through consumption of wheat grains was 2.3–2.4 for rural inhabitants and 1.4–1.5 for urban inhabitants. The average intake of inorganic As for rural inhabitants in Huaibei was above 10 μg day?1. These findings indicated that the inhabitants around the coal mine are experiencing a significant potential health risk due to the consumption of locally grown wheat.  相似文献   

13.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   

14.
Preliminary results from the French ASPITET programme demonstrated that Cd background levels in agricultural soils can vary greatly (0.02-6.9 mg Cd kg(-1)) depending on parent material and pedogenic processes (Baize, 1997). However, the total Cd content in soil is often not significantly related to the Cd concentration in edible plant parts. A field case study was undertaken across the southern part of the Yonne district, Burgundy, France. This area has various soil series with either low or high geochemical Cd content in the topsoil. Cd availability in soils sampled at 16 sites belonging to five soil series was investigated using single extractions. In addition, shoots (at stem elongation) and grains (at harvest) of field-grown wheat were collected at the same sites and analysed for macronutrients and trace elements. Cd concentrations in grain varied from 0.015 to 0.146 mg Cd kg(-1) DM depending on soil characteristics, soil series, and plant mineral composition. Cd grain concentrations did not reflect total Cd content in the surface soil layer; however, they were correlated with Cd extracted by a 0.1 M calcium nitrate unbuffered solution, and to a lesser extent with either soil pH or CEC. These three parameters may be useful guides to predict Cd in wheat grain harvested in the Yonne district. An inverse relationship was found between Cd and Cu contents in grain. The highest Cd concentrations in wheat grain occurred in plants grown on Aubues soils which had marginal Cu and Zn deficiencies in shoots. In order of Cd accumulation in wheat grain, soil series may be ranked as follows: Domérien < Carixien, Terres Noires < Sols Marron < Aubues.  相似文献   

15.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   

16.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

17.

Purpose

Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited.

Methods

This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils.

Results

All three P treatments greatly reduced CaCl2-extractable Pb and Zn by 55.2?C73.1% and 14.3?C33.6%, respectively. The PR treatment decreased CaCl2-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6?C81.9% and 16.3?C64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8?C178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7?C127% and 23.5?C170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3?C96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4?C28.9%, they had little effect on Pb and Cu uptake.

Conclusions

The results indicated that all P treatments were effective in immobilizing Pb. The effect on the immobilization of Cu and Zn varied with the different P treatments and evaluation methods. Metal-sensitive plants are more responsive to the P treatments than metal-resistant plants. Planting affects leaching of metals in the P-amended soils, specially leaching of colloid fraction. The conventional assessment on leaching risks of heavy metals by determining dissolved metals (filtered through 0.45-??m pore size membrane) in leachates could be underestimated since colloid fraction may also contribute to the leaching.  相似文献   

18.
Spatial distribution of heavy metals in urban soils of Naples city (Italy)   总被引:42,自引:0,他引:42  
Concentrations of surface and sub-surface soil Cu, Cr, Pb and Zn in the Naples city urban area were measured in 1999. Contourmaps were constructed to describe the metals spatial distribution. In the most contaminated soil samples, metals were speciated by means of the European Commission sequential extraction procedure. At twelve sites, Cu, Pb and Zn levels in soil were compared with those from a 1974 sampling. Many surface soils from the urban area as well as from the eastern industrial district contained levels of Cu, Pb and Zn that largely exceeded the limits (120, 100 and 150 mg kg(-l) for Cu, Pb and Zn, respectively) set for soils of public, residential and private areas by the Italian Ministry of Environment. Chromium values were never above regulatory limits(120 mg kg(-1)). Copper apparently accumulates in soils contiguous to railway lines and tramway. Cu and Cr existed in soil mainly inorganic forms (-68%), whereas Pb occurs essentially as residual mineral phases (77%). The considerable presence of Zn in the soluble, exchangeable and carbonate bound fraction (23%) suggests this element has high potential bioavailability and leachability through the soil. Concentrations of Cu, Pb and Zn have greatly increased since the 1974 sampling, with higher accumulation in soils from roadside fields.  相似文献   

19.
Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg(-1)) and Zn (2602 mg kg(-1)), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg(-1)) and Pb (190 mg kg(-1)). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl2 or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg(-1) soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.  相似文献   

20.
Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号