首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Larvae of Pisoides edwardsi (Bell, 1835) have been reared in the laboratory at 2 different temperatures (13.8° and 18.5°C), from hatching to megalops stage. The two zoeal stages and the megalops, as well as the setation of the functional appendages are described and illustrated. The main characteristics useful to differentiate the larvae of P. edwardsi from those of Libidoclaea granaria, the other Chilean species belonging to the same sub-family, are discussed. Data on duration of zoeal development, length of moulting intervals, and mortality at the 2 test temperatures, are also given.This study was financially supported, in part, by the Chilean Ministry of Agriculture.  相似文献   

2.
Larvae of the xanthid crab Pilumnoides perlatus (Poeppig, 1836) have been reared in the laboratory at 3 different temperatures (10.2°, 15° and 20°C) from hatching to megalopa stage. The 5 zoea stages and the megalopa, as well as the setation of the functional appendages are described and illustrated. The main characteristics useful to differentiate the larval stages of P. perlatus from those of Homalaspis plana, the other Chilean species of the same family so far reared, are discussed. Data on duration of zoea development, length of moulting intervals, and mortality at the 3 test temperatures are also given.This study was partially supported by the Chilean National Commission for Scientific and Technological Research (CONICYT).  相似文献   

3.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

4.
Northern shrimp Pandalus borealis (Krøyer) larvae hatch in the northern Gulf of St. Lawrence from early May to the end of June, and larval development occurs over a range of relatively cold water temperatures. Because of the long duration of the pelagic phase and the difficulty of sampling all successive larval stages at sea, we used laboratory experiments to assess the effects of water temperature on larval development and growth. In spring 2000, P. borealis larvae were reared from hatching to the first juvenile stages (i.e., stage VI and VII) at three temperatures (3, 5, and 8°C) representing conditions similar to those in spring in the northern Gulf of St. Lawrence. Larval development and growth were dependent on temperature, with longer duration and smaller size (cephalothorax length, CL, and dry mass, DM) at 3°C relative to the 5 and 8°C treatments. There were no significant differences in the morphological characters of the different stages among treatments, indicating that regular moults occurred at each temperature. The results suggest a negative impact of cold temperatures (lower intra-moult growth rates and smaller size) and, possibly, higher cumulative mortality due to longer development time that could affect the success of cohorts at sea. However, CL and DM for stage III and later larvae were smaller than those of larvae identified at the same developmental stage in field locations. It is possible that the diet offered to larvae in this experiment (Artemia nauplii, either newly hatched nauplii or live adults, depending on the developmental stage) was not optimal for growth, even though it is known to support successful P. borealis larval development. In the field, there is the possibility that phytoplankton contributes to the larval diet during the first stages and stimulates development of the digestive glands. Furthermore, the nutritional quality of the natural plankton diet (e.g., high protein content, fatty acid composition) might be superior and favourable to higher growth rates even at lower temperatures.Communicated by R.J. Thompson, St. Johns  相似文献   

5.
Temperature is one of the most critical environmental factors for fish ontogeny, affecting the developmental rate, survival and phenotypic plasticity in both a species- and stage-specific way. In the present paper we studied the egg and yolk-sac larval development of Pagellus erythrinus under different water temperature conditions, 15°C, 18°C and 21°C for the egg stage and 16°C, 18°C and 21°C for the yolk-sac larval stage. The temperature-independent thermal sum of development was estimated as 555.6 degree-hours above the threshold temperature (the temperature below which development is arrested), i.e. 7°C for the egg and 12.1°C for the yolk-sac larval stage. Higher hatching and survival rates occurred at 18–21°C. At the end of the yolk-sac larval stage, body morphometry differed significantly (p<0.05) between the temperatures tested. The growth rate of the total length increased as temperature rose from 16°C to 18°C, while in the range of 18–21°C it stabilized and was independent of water temperature. The estimated Gompertz growth curve for the yolk-sac larvae of P. erythrinus was (r2=0.992) for the 16°C, (r2=0.991) for the 18°C and (r2=0.981) for the 21°C treatment. The efficiency of vitelline utilization during the yolk-sac larval stage was higher at 18°C.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
R. Kenny 《Marine Biology》1969,4(3):219-223
The resistance to high temperatures of two species of intertidal tube-dwelling polychaete worms has been tested to show seasonal and geographic variations. The summer 50% survival temperature at Beaufort, North Carolina, was 42.5 °C for Diopatra cuprea (Bosc) and 40.5 °C for Clymenella torquata (Leidy). Winter 50% survival temperatures for both species at Beaufort were approximately 4.0 C° lower. Both species showed a geographic difference in 50% survival temperature of more than 4.0 C° between North Carolina and Massachusetts in summer. D. cuprea from the Mississippi coast showed a lower survival temperature, probably due to combined temperature and salinity effects. Laboratory acclimation of C. torquata from Beaufort at low temperatures, during summer months, produced experimental results similar to those from winter animals. The seasonal differences in temperature tolerance are phenotypic expressions of a physiological response which can be related to environmental temperature patterns.  相似文献   

7.
The shore crab Carcinus maenas was reared in the laboratory from egg deposition to sexual maturity. Special enclosures were developed for cultivation of the larvae. Food and temperature proved to be the most important exogenous factors for rearing success. Fresh Artemia salina nauplii were the only food suitable for all larval stages. The following rearing temperatures proved most successful during larval development: (1) embryonic development, 10°C; (2) zoea stages, 15°C; (3) megalopa stage, 17.5°C. The larvae hatch preferably in darkness when reared under short-day conditions.  相似文献   

8.
Monhystera disjuncta Bastian 1865 and Theristus pertenuis Bresslau and Schuubmans Stekhoven 1935 were cultured on sea-water agar in Boveri dishes at various temperatures. Generation time was measured as the period elapsing in two consecutive generations between the first egg deposit, the first hatching, or the first appearance of sexual characters. M. disjuncta has a generation time of 13 days at 17° to 22°C, 15 days at 13° to 15°C, 17 days at 9° to 12°C, 22 days at 7°C, 77 days at 0° to 2°C, and 135 days at -1° to 1°C. Low temperatures result sometimes in vivipary. T. pertenuis has a generation time of 23 days at 17° to 22°C, 41 days at 13° to 15°C, 47 days at 9° to 12°C, and 71 days at 7°C. M. disjuncta females live for up to 61 days at 17° to 22°C, T. pertenuis females up to 208 days at 7°C. Under North Sea temperature conditions, 17 generations of M. disjuncta and 7 generations of T. pertenuis could occur during the course of 1 year (calculation based upon experiments giving the shortest possible generation time). Females deposit eggs over a couple of days, therefore, the medium generation time is longer, and there will be fewer generations per year in the sea.  相似文献   

9.
The life cycle of the hydroidClytia attenuata (Calkins) (Calyptoblastea: Campanulariidae) has been completed in the laboratory including development of the medusa, previously described asPhialidium lomae Torrey (Leptomedusae: Campanulariidae). Under laboratory conditions, the hydroid exhibits some morphological variation. Characteristic branching of the hydroid occurs at temperatures between 17° to 19°C. At 13° to 15°C the colonies are unbranched and cannot be distinguished fromClytia cylindrica L. Agassiz. Young medusae are similar to other young species ofPhialidium. Development to the adult form requires 25 to 30 days at 17° to 24°C. The adult medusae are 6 to 10 mm in diameter, watch-glass shaped, and have 20 to 28 tentacles. Based on the adult medusa,Clytia attenuata is maintained as a valid species.  相似文献   

10.
The ivory tree coral Oculina varicosa (Leseur, 1820) is an ahermatypic branching scleractinian that colonizes limestone ledges at depths of 6–100 m along the Atlantic coast of Florida. This paper describes the development of embryos and larvae from shallow-water O. varicosa, collected at 6–8 m depth in July 1999 off Fort Pierce, Florida (27°32.542 N; 79°58.732 W). The effect of temperature on embryogenesis, larval survival, and larval swimming speed were examined in the laboratory. Ontogenetic changes in geotaxis and phototaxis were also investigated. Embryos developed via spiral cleavage from small (100 µm), negatively buoyant eggs. Ciliated larvae developed after 6–9 h at 25°C. Embryogenesis ceased at 10°C, was inhibited at 17°C, and progressed normally at 25°C and 30°C. Larval survival, however, was high across the full range of experimental temperatures (11–31°C), although mortality increased in the warmest treatments (26°C and 31°C). Larval swimming speed was highest at 25°C, and lower at the temperature extremes (5°C and 35°C). An ontogenetic change in geotaxis was observed; newly ciliated larvae swam to the water surface and remained there for approximately 18 h, after which they swam briefly throughout the water column, then became demersal. Early larvae showed no response to light stimulation, but at 14 and 23 days larvae appeared to exhibit negatively phototactic behavior. Although low temperatures inhibited the development of O. varicosa embryos, the larvae survived temperature extremes for extended periods of time. Ontogenetic changes in larval behavior may ensure that competent larvae are close to the benthos to facilitate settlement. Previous experiments on survival, swimming speeds, and observations on behavior of O. varicosa larvae from deep-water adults indicate that there is no difference between larvae of the deep and shallow populations.Communicated by J.P. Grassle, New Brunswick  相似文献   

11.
Larvae of the bivalve molluso Adula californiensis (Phillippi, 1847) were reared for 3 days, from fertilization to veliger stage, at optimum conditions (15°C, 32.2 S), and then transferred to experimental temperatures and salinities for 22 more days to determine the effects of these factors on survival and growth. For larvae surviving to 25 days, maximum survival was estimated, by response-surface techniques, to occur at temperatures below 10°C and at salinities above 25. A comparison of 60% survival response contours for 3, 15 and 25-day old larvae indicated a progressive shift in temperature and salinity tolerance with age of larvae. The older larvae became more tolerant to reduced salinity, but less tolerant to high temperatures. Growth of the larvae over 25 days of culture was slight, and relatively independent of temperature and salinity conditions found in the environment. Oxygen consumption of 3-day old veliger larvae measured at various combinations of temperature and salinity generally increased from 7° to 18°C, and then sharply decreased from 18° to 21°C. A plateau of oxygen consumption from 9° to 15°C at 32.9 S indicated that the larvae are adapted to oceanic rather than estuarine conditions. A comparison of 25-day larval survival, mean length, and growth, with oxygen consumption of 3-day old veliger larvae indicated that high temperatures (15°C, and above) coupled with reduced salinities (26.1, and below) were unfavorable for prolonged larval life. Because of the lack of larval adaptations to estuarine conditions, larva survival and, hence, successful recruitment of this species within Yaquina Bay (Oregon, USA) depends upon the essentially oceanic conditions found only during the summer in the lower part of the Bay.  相似文献   

12.
Larvae were hatched from ovigerous Dungeness crabs, Cancer magister, collected from Puget Sound Basin, Washington, USA, in April, 1986, and the effects of temperature on rates of survival and development were studied for each of the five zoeal stages both in small batch-culture and in individual culture. Culture method had little effect on the results at 10°, 15°, and 20°C. Increased mortality was measured at all stages at 20°C, with 100% mortality occurring during the terminal fifth stage. Fifth stage larvae may also show higher mortality at 15°C than at 10°C. Stage duration varied inversely with temperature at all stages, although differences between 10° and 15°C were greater than between 15° and 20°C. The results indicate that survival and stage duration are independent of the values for the previous and subsequent stages, that variability among larvae in instar duration increases with temperature, and that the terminal fifth zoeal stage is the most sensitive to temperature stress. Duration of a late zoeal instar is not related to its earlier development rate nor can early development rates be used to predict whether individual zoeae will successfully develop to the megalopa. Measurements of megalopa dry weights indicate no differences due either to previous culture temperatures or to total time to the megalopa. Predictive models of larval transport that require estimates of larval duration should account for both changes in temperature response that can affect individual stage duration, and variability among individuals in stage duration that can influence the degree of larval dispersion.  相似文献   

13.
Juvenile blue crabs, Callinectes sapidus Rathbun, were grown in the laboratory at different temperatures, and metabolic-rate determinations were made. Growth is shown to be dependent upon temperature. Crabs kept at high temperatures (34° and 27°C) grow faster than those kept at lower temperatures (13°, 15°, and 20°C). Increase in size per molt is less at higher temperatures than at lower ones. Mortality is directly proportional to temperature between 13° and 34°C and is very high during ecdysis at elevated temperatures. Metabolic rate increases with temperature, but various degrees of acclimation are seen after 4 weeks exposure. No acclimation of general activity to temperature was found. The findings are applied theoretically to crabs living in the region of heated discharge canals of electrical generators: the motile blue crab could extend its growing season without decreasing size at maturity by active selection of thermal surroundings.In part based on a thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science at the University of Florida, USA.  相似文献   

14.
Tilapia zillii Gervais is recorded for the first time from Suez Bay off the Institute of Oceanography and Fisheries, Ataqa (UAR), during October and November 1965 and 1966. Salinities and temperatures of surface sea water ranged from 42 to 42.79 and 23° to 24.4°C, respectively. The occurrence of specimens of T. zillii in the Bay indicates that it can tolerate high salinities and survive in the sea.  相似文献   

15.
Larvae of the estuarine grass shrimp Palaemonetes pugio (Holthuis) were reared from hatch through successful completion of metamorphosis in 80 combinations of salinity (3 to 31%), temperature (20° to 35°C), and zinc (0.00 to 1.00 ppm Zn++). Response-surface methodology was employed to depict the individual effects and interactions of the three factors on survival and developmental duration through total larval development. Outside the optimal salinity-temperature conditions of 17 to 27 S and 20° to 27°C, viability of larvae was reduced by both the individual effects of salinity and temperature and interactions between the two factors. Survival capacity of larvae and resistance adaptations to salinity and temperature were progresively reduced by zinc concentrations from 0.25 to 1.00 ppm Zn++. Response-surface analysis of the data suggested that the duration of total larval development of P. pugio was least at salinities from 18 to 23 and at temperatures from 30° to 32°C. At both higher and lower salinity-temperature conditions and in increasing zinc concentrations from 0.25 to 1.00 ppm Zn++, developmental rates were retarded. A significant zinc-temperature interaction existed, whereby increasing zinc concentrations reduced both survival and developmental rates of larvae more at suboptimal temperatures. Larval resistance to zinc toxicity was least at supraoptimal salinities, indicative of a significant zinc-salinity interaction. The reduced viability, restricted euryplasticity, and retarded developmental rates of P. pugio larvae developing in media with low-level zinc contamination would limit the distributive properties of the pelagic phase in the life cycle of the species and reduce recruitment both into and out of the parent estuarine population.  相似文献   

16.
Laboratory measurements of oxygen consumption were made on Penaeus monodon (Fabricius) from protozoea to adult stage at temperatures between 15° and 35°C. The logarithmic relationship between weight-specific respiration rate (WRt) and temperature (T) for two size groups, Protozoea 1 (PZ1) to Postlarva 1 (PL1) and PL to adult, are given as; WRt=100.431+0.0146 (T) (ml O2 g-1 h-1) and WRt=10-0.948+0.0338 (T) (ml O2 g-1 h-1), respectively. Additionally, equations relating metabolic rate, temperature and size for the two size groups are; PZ1-PL1: log M=0.431+0.0146T+(1.25 (log TL)+0.579), and PL1-adult: log M=-0.948+0.0338T+(2.60(log CL)-0.683), where M=oxygen consumption in ml O2 individual -1h-1, T=temperature in °C, TL=total length in cm, and CL=carapace length in cm. Activation energies of 6 186.75 J for PZ1-PL1 and 14 066.62 J for PL-adults point to different metabolic pathways or to differences in the ratio between the metabolic pathways used.  相似文献   

17.
Continuous temperature measurements were made in a typical South East African estuary. Mean summer (November to March) temperatures were in the range 19° to 24°C, and in winter (June to August) from 13° to 16°C. Large daily temperature fluctuations of 6° to 10°C occurred in summer; these appear to result from tidal movement of cool sea water into the estuary. In winter, temperature fluctuations were much smaller (3° to 5°C). The burrowing prawn Upogebia africana (Obtmann) was found to have an upper lethal temperature of 29°C in both winter and summer. The resistance time of prawns to temperatures above 30°C was much greater in summer than in winter. It was possible to acclimate winter prawns and increase their resistance time to a level comparable to that of summer individuals. A latent period of 40 h occurred before acclimation effects were detectable. Long-term exposure of prawns to high temperatures did not increase their resistance above that of summer prawns. Water at a temperature above this upper lethal temperature is not pumped through the burrows. This avoidance behaviour considerably increases the ability of U. africana to withstand short-lived temperature extremes.  相似文献   

18.
The larvae of Ocypode quadrata (Fabricius) have been reared in the laboratory, from hatching to megalopa stage, at 35 S, 25°C. The five zoeal stages and the megalopa are described, including functional appendages of each stage. On the basis of morphological characteristics, the first zoeal and megalopa stages of O. quadrata can be distinguished from similar stages of closely related Ocypodinae. At 25°C, the megalopa appeared in a minimum of 34 days following hatching.  相似文献   

19.
S. Choe 《Marine Biology》1971,9(1):31-37
Individuals of the oriental brown shrimp Penaeus japonicus Bate, were raised separately (1 shrimp per rearing cage) with surplus food, in almost dark, non-sediment conditions. Results were obtained regarding growth of each part of the body in conjunction with exuviation and molting cycle. Increases in carapace, body length and body weight conformed to the general pattern discribed by Hiatt (1948), with no difference in growth resulting from sex, or inflexion point in juvenile stage. The molting cycle of shrimp weighing 1.5 to 15 g was 6 to 17 days at a water temperature of 20° to 28°C. The molting cycle was prolonged in proportion to the size of the shrimp; shortened as the water temperature increased.  相似文献   

20.
Patterns of activity and metabolism were investigated in larval Atlantic cod (Gadus morhua L.) between December 1991 and July 1992: (1) throughout larval development; (2) between two genetically discrete populations (Scotian Shelf and Newfoundland) and (3) as a function of two different culture temperatures. During the yolk-sac stage (0 to 5 d post-hatch), changes in swimming speed were not related to mass-specific metabolic rates; no portion of the mass-specific oxygen consumption could be explained by changes in activity. In the mixed feeding stage (6 to 14 d posthatch), there was a tendency for oxygen consumption to be related to changes in swimming speed. In the exogenous feeding stage (>14 d post-hatch), oxygen consumption significantly increased with swimming speed. These ontogenetic patterns of activity and metabolism were the same for larvae from the Scotian Shelf and Newfoundland populations. However, over the entire larval life and among ontogenetic stages, the metabolic cost of activity (mass-specific O2 consumption/swimming speed) of Scotian Shelf larvae was significantly higher than that of Newfoundland larvae. When cod larvae, that had developed at 5°C, were acutely exposed to 10°C, Scotian Shelf larvae had a higher intrinsic cost of activity than Newfoundland larvae, over the entire larval life. During the exogenous feeding stage, the mean metabolic cost of activity for Newfoundland larvae raised at 10°C and tested at 10°C was significantly higher and more variable than that of larvae raised at lower temperatures. However, the metabolic cost of activity of larvae raised and tested at 10°C was not significantly different between source populations. Together these findings suggest that differences in swimming energetics reflect changing energy requirements for activity among ontogenetic stages, and reflect adaptation to regional environments among genetically discrete populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号