首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This research aimed to prepare the silver nanoparticles (AgNPs)-loaded antimicrobial wound dressing patch using ethyl cellulose as a matrix membrane and diethyl phthalate as a plasticizer. The polymer suspension was homogeneously mixed with plasticizer, and then added to the colloidal AgNPs suspension. This mixture was poured into Petri dish and subsequently dried in a hot air oven at 80?±?2 °C for 10 h. The minimum inhibition concentration of the colloidal AgNPs suspension was 2.5 µg/ml. The AgNPs-loaded antimicrobial wound dressing patch was evaluated for physical properties by differential scanning calorimeter, X-ray diffraction, scanning electron microscope, and in vitro study. The antimicrobial wound dressing patch did not exhibit any interaction between the matrix membrane and AgNPs. The AgNPs were evenly dispersed in the patch. The patch could control the release of silver at 102.98?±?4.11% over 12 h. Although the AgNPs-loaded antimicrobial wound dressing patches can be easily prepared by the simple method, in future studies antimicrobial wound dressing patch will be developed by employing different types of film forming agents.  相似文献   

2.
Journal of Polymers and the Environment - Lignin-loaded nanoparticles are versatile nanomaterials that may be used in wound healing properties. The current study describes a wound dressing...  相似文献   

3.
Chitin biodegradation and wounded bark tissue healing were demonstrated in several evergreen and deciduous trees by dressing with a sheet of chitin-containing films or sponges. Chitinase activities in the tree bark tissues around the wounds were enhanced by this treatment up to four times those of the untreated wounds. Significant seasonal changes of chitinase activities were observed with the bark and leaf tissues of deciduous trees, but few with those of evergreen trees. A sheet of chitin films implanted or dressed in the tree bark tissues was biodegraded within 4 to 24 weeks after implantation and was assimilated into the wounded bark tissues, resulting in the stimulation of the wounded bark tissue healing.  相似文献   

4.
Poly (l-aspartic acid-citric acid) green copolymers were developed using thermal polymerization of aspartic acid (ASP) and citric acid (CA) followed by direct bulk melt condensation technique. Antibacterial properties of copolymer of aspartic acid based were investigated as a function of citric acid content. This study is focused on the microorganism inhibition performance of aspartic acid based copolymers. Results showed that inhibition properties increase with increasing citric acid content. Characterization of obtained copolymers was carried out with the help of infrared absorption spectra (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The antibacterial activity of copolymers against bacteria like E-coli, Bacillus and pseudomonas was investigated. The copolymers showed excellent antimicrobial activities against three types of microorganisms. Overall studies indicated that the above copolymers possess a broad wound dressing activity against above three types of bacteria and may be useful as antibacterial agents.  相似文献   

5.
Hydrogels are in use for encapsulation of curcumin for possible use in wound healing. Encapsulation helps in targeted delivery and enhanced activity of curcumin. We report here a pH sensitive hydrogel developed from chitosan. The hydrogel was prepared by reaction of chitosan and d-glucose, facilitated by the reducing agent Na-cyanoborohydride. The maximum yield of the hydrogel was obtained at pH 4.5 with the amount of chitosan, d-glucose and Na-cyanoborohydride as 0.3, 2.0 and 2.0 g respectively. A maximum curcumin loading efficiency of 74% was observed with curcumin amount in the feed at 0.15 g. The release study revealed a sustained release pattern over a period of 80 h with an initial burst release. Curcumin loaded hydrogel showed mild antibacterial activity against Proteus mirabilis and Enterobacter aerogenes.  相似文献   

6.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

7.
Biofilms consist of groups of microorganisms that adhere to surfaces, such as wound and implant surfaces, making it difficult to prevent or remove their formation by antibiotic treatment, due to the innate resistance of the biofilm. Effective treatments of medical biofilms are limited. Polyhydroxyalkanoate (PHA) is a biodegradable and biocompatible polymer that is a suitable alternative to petroleum based polymers for use as a raw material for medical applications. In this study, membranes of the copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] containing different HHx monomer contents were used due to its porosity and flexibility, and different sheets were prepared by solvent-casting and electrospinning methods. The sheets were loaded with lysozyme in order to measure the maximum amount of protein adsorption and to examine the ability of immobilized enzyme to inhibit biofilm formation and detach previously established biofilms. Our results have shown maximum loading of 16.1 µg enzyme per 9.5 mm3 discs, and these sheets are effective for inhibiting biofilm formation. Also, lysozyme loaded, eletrospun sheets were observed to more effectively inhibit biofilm formation, as compared to solvent-cast sheets. Based on this study, P(HB-co-HHx) sheets are a suitable material for being used as a potential raw material for fabrication of wound dressings to be used in anti-biofilm treatments.  相似文献   

8.
Polyurethane (PUR) plastic sheets were prepared by reacting hydroxylated polymeric soybean oil (PSbOH) synthesized from autoxidized soybean oil with polyethylene glycol (PEG) in the presence of isophorone diisocyanate (IPDI). FTIR technique was used to identify of chemical reactions. These polyurethanes have different valuable properties, determined by their chemical composition. The effect of stoichiometric balance (i.e., PSbOH/PEG-2000/IPDI weight ratio) on the final properties was evaluated. The polyurethane plastic sheets with the PSbOH/PEG-2000/IPDI weight ratio 1.0/1.0/0.67 and 1.0/0.3/0.3 had excellent mechanical properties indicating elongation at break more than 200%. Increase in IPDI and decrease in PEG weight ratio cause the higher stress–strain value. The properties of the materials were measured by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), stress–strain measurements and FTIR technique.  相似文献   

9.
The conjugated soybean oil was synthesized through the isomerization reaction of soybean oil to transformed the structure of linoleic acid into conjugated linoleic acid structure, and Rhodium complexes (RhCl(Pph3)3) was used as catalyst. The efficiency on the conjugation of catalyst RhCl (Pph3)3, tin dichloride dehydrate (SnCl2·2H2O) and triphenylphosphine (Pph3) were evaluated. The results showed when RhCl(Pph3)3, SnCl2·2H2O and Pph3 are 9.25, 9.0 and 13.1 mg in 100 g soybean oil respectively, the highest conversion of conjugation achieved 96%. The free radical copolymerization of conjugated soybean oil with acrylonitrile (AN) and dicyclopentadiene (DCP) was studied. AIBN was used as the initiator. FT-IR and 1H-NMR results indicates that the conjugated soybean oil with AN and DCP did occur free radical copolymerization with the initiator AIBN. The product is light yellow powder. The thermal properties of the soy-based copolymer were investigated by TG and DSC. The initial degradation temperature of polymers is higher then 250 °C.  相似文献   

10.
Synthesis and characterization of novel biodegradable, water soluble and optically active DL-malic acid (DMA) and citric acid (CA) copolymers were studied for possible use as antibacterial agents. The copolymers were synthesized by direct bulk melt condensation in the absence of a catalyst above 150 °C. Characterization of obtained copolymers was carried out with the help of infrared absorption spectra, differential scanning calorimetry and thermo gravimetric analysis. The antibacterial activity of copolymers against bacteria was investigated. The results obtained shows the above copolymers possess a broad wound dressing activity against different types of bacteria and may be useful as antibacterial agents.  相似文献   

11.
Jackfruit starch based biodegradable films containing lysozyme were characterized for their antimicrobial activity, thickness, solubility, water vapor permeability and mechanical properties. The biodegradable films had good appearance and antimicrobial activity against Micrococcus lysodeikticus. The thickness of the biodegradable films were not affected by the variation in pH, but the addition of lysozyme increased the thickness, the thickest films being those with the highest lysozyme concentrations. The variation in pH of the filmogenic solutions affected the solubility of the biodegradable films, water solubility being greatest at pH 7.0 and with the highest lysozyme concentration. The permeability of the biodegradable films was increased by incorporating lysozyme. The lysozyme concentration and pH variation caused changes in the mechanical properties. The addition of 8% lysozyme increased the tensile strength and Young’s modulus for all the pH values studied. With respect to the release of antimicrobial activity, the diffusion of lysozyme was shown to follow Fickian transport mechanism.  相似文献   

12.
The incorporation of antimicrobial metals such as silver is an alternative to protect the material against microbial attack. However, loaded polymer can lose its antimicrobial properties after some time of use, and the additive may even leak out into the environment becoming harmful to non-target organisms. This study aims to evaluate the mechanical properties and antimicrobial activity of silver containing thermoplastic elastomer (TPE) samples exposed to weathering and the influence of additive incorporation in material biodegradation in the soil. For this purpose, silver ions (Ag+_bentonite, Ag+_phosphate) and silver nanoparticles (AgNp_silica) based additives were blended in a formulation of SEBS, polypropylene and mineral oil. The test samples were exposed to natural ageing over nine months, and were then evaluated according to their mechanical properties, antimicrobial activity, and degree of crystallinity and surface characteristics. The biodegradation process before and after natural ageing was evaluated through the generation of carbon dioxide. The results show that the action of natural ageing reduced the mechanical properties of loaded and unloaded TPE, and modified the degree of crystallinity and the chemical characteristic of the TPE surface. The presence or type of additive did not influence material resistance after being exposed to weathering. A decrease in antimicrobial activity in samples after natural ageing was observed. At a variable level and according to the chemical content, generation of carbon dioxide from TPE samples was greater in aged samples than in unexposed ones.  相似文献   

13.
The use of vegetable oil as an electron donor to enhance the reductive dechlorination of chlori‐nated solvents as an in situ remediation technology is gaining significant traction. Vegetable oil is a cost‐effective slow‐release electron donor with greater hydrogen‐release efficiency than other electron‐donor products. However, neat vegetable oil can inhibit distribution in aquifers due to the oil droplets blocking the flow of groundwater through the smaller pore spaces in the aquifer materials. This issue has been partially overcome by applying the vegetable oil as an oil‐water emulsion, which typically is created in the field. However, the field preparation results in a mixture of droplet sizes, including larger droplets that can make the emulsions unstable and reduce the soil permeability by blocking soil‐pore throats with oil. RNAS, Inc., has developed a kinetically sta‐ble soybean oil emulsion (“Newman Zone”) consisting of submicron droplets with less droplet‐size variation than field‐prepared emulsions. This product is composed of a blend of fast‐release (sodium lactate) and slow‐release (soybean oil) electron donors. The emulsion is produced in a stable factory environment in which it is pasteurized and packaged in sterile packaging. This ma‐terial can be utilized as an electron donor without further treatments or amendments in the field. This article discusses factors associated with selecting electron donors and the development of vegetable oil–based products. A case study of an application of Newman Zone at a former adhe‐sives manufacturing facility is then presented. The case study demonstrates the effect of Newman Zone in reducing chlorinated solvent concentrations in groundwater by both rapidly stimulating initial microbial activity and supporting long‐term reductive dechlorination with a slow‐release electron donor. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition.  相似文献   

15.
The physical and chemical properties of crude oils differ greatly, and these properties change significantly once oil is spilled into the marine environment as a result of a number of weathering processes. Quantitative information on the weathering of spilled crude is a fundamental requirement for a fuller understanding of the fate and behaviour of oil in the environment. Additionally, such data are also essential for estimating windows-of-opportunities, where specific response methods, technologies, equipment or products are most effective in clean-up operations. In this study, the effects of a relatively low toxicity compound, biodiesel (rape seed oil methyl ester) on the rate of removal and weathering characteristics of crude oil within artificial sand columns are thoroughly investigated using GC/MS techniques. In the absence of the biodiesel, the crude oil exhibits low mobility and a slow rate of microbial degradation within the sediment and as a result, a high degree of persistance. Brent crude oil was subject to a progressive loss of the low molecular weight n-alkanes with respect to time through evaporation and a preferential migration of these fractions through the sediment to depth. The addition of the biodiesel led to greater recovery of oil from the sediment if applied to relatively unweathered crude oil. This was as the result of the crude oil dissolving within the more mobile biodiesel. The negligible concentration of the n-C10 to n-C21 fraction in surface sediment samples suggests a greater solubility of these fractions within the biodiesel and that their subsequent adsorption onto subsurface sediment particles was responsible for their absence from water flushed through the sands. These results suggest that biodiesel may have an active role in the beach clean-up of spilt crude oil.  相似文献   

16.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

17.
The potential biodegradability of several vegetable oil-based polymers was assessed by respirometry in soil for 60–100 days at temperatures of 30–58°C. Films of soybean oil and linseed oil which were oxidatively polymerized (Co catalyst) on a kraft paper support were 90%–100% mineralized to CO2 after 70 days at 30°C. Mineralization of polymerized tung oil to CO2 was much slower than soy or linseed oils. Mineralization of epoxy resins made from epoxidized soybean oil (ESO) and aliphatic dicarboxylic acids was rapid while mineralization of similar resins made with a triacid (citric) was slower. There was no significant degradation of polyamine/ESO resins after 100 days at 58°C. Mineralization of the available carbon in vegetable oil polyurethanes and cationically polymerized ESO was less than 7.5% after 70 days at 30°C and 25 days at 55°C compared to 100% for soybean oil. From these results, it appears that triglycerides highly cross-linked with non-degradable linkages are not biodegradable to a significant extent while triglycerides cross-linked with hydrolysable bonds such as esters remain biodegradable.  相似文献   

18.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

19.
Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.  相似文献   

20.
A variety of novel polymeric materials ranging from elastomers to tough, rigid plastics have been prepared by the cationic copolymerization of regular soybean oil, low-saturation soybean oil, or conjugated low-saturation soybean oil with various alkene commonomers. Using appropriate compositions and reaction conditions, 70–100% of the soybean oil is covalently incorporated into the cross-linked polymer networks, contributing significantly to cross-linking during copolymerization. The resulting thermosets exhibit thermophysical and mechanical properties that are competitive with those of their petroleum-based counterparts. In addition, good damping and shape memory properties have been obtained by controlling the degree of cross-linking and the rigidity of the polymer backbone. New materials with similar characteristics have also been produced from other biological oils, including tung, and fish oils using the same technique. The new, more valuable properties of these bioplastics suggest numerous promising applications of these novel polymeric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号