首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymer composites were prepared from starch, crude glycerol, rapeseed cake and urea. The uniform films of the composites were prepared by casting technique. Mechanical properties and solubility in water of the films were studied. Increase of the content of rapeseed cake in the composites lead to the decrease of tensile strength and to the increase of elongation at break. The solubility of the composites in water increased with the increase of the content of rapeseed cake and urea. The changes of pH of soil being in the contact with the composite films were studied. It was established that the composites with the ratio of starch, rapeseed cake, crude glycerol and urea ranging from 4:6:3:0.2 to 4:6:3:1 can be used for the production of disposable plant pots. Too high content of urea can increase pH of soil up to the limit dangerous for plants.  相似文献   

2.
This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as the interaction with water, were measured. The compatibility of the film-forming components and the uniformity of the films were determined by zeta potential and SEM, respectively. The glycerol and mucilage allowed obtaining more hydrophilic films. The barrier properties of the films made from 100 % chitosan were similar to composed films containing PVA up to 40 %. The results of this study suggest that the interaction between chitosan and mucilage could increase water vapor permeability. The films prepared from either 100 % chitosan or PVA showed a more hydrophobic behavior as compared to the composed films. The films were homogenous since no boundary or separation of components was observed, indicating a good compatibility of the components in the films.  相似文献   

3.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

4.
The feasibility of sweet cherry gum as a bio-based film-forming material and effect of hydrogen peroxide as a chemical modifier investigated. The influence of film compositions (gum, glycerol) and hydrogen peroxide on the physical properties of films, including solubility in water, permeability to water vapor (WVP), mechanical properties, and transparency, thermal and microstructural properties evaluated. The results showed that WVP and thickness increased by gum and glycerol concentration, but significantly decreased by hydrogen peroxide. As expected, elongation-at-break and solubility, increased at higher concentration of glycerol but the tensile strength decreased at the same condition. The film transparency was influenced by the dry weight content and was improved by higher concentrations of hydrogen peroxide. The partial degradation of polymer chain by hydrogen peroxide was observed by FTIR analysis.  相似文献   

5.
Several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers were prepared and characterized. Cohesive and flexible cast films were obtained by blending lignocellulosic fibers derived from orange waste and PVA with or without cornstarch. Films were evaluated for their thermal stability, water permeability and biodegradation properties. Thermogravimetric analysis (TGA) indicated the suitability of formulations for melt processing, and for application as mulch films in fields at much higher temperatures. Composite films were permeable to water, but at the same time able to maintain consistency and composition upon drying. Chemical crosslinking of starch, fiber and PVA, all hydroxyl functionalized polymers, by hexamethoxymethylmelamine (HMMM) improved water resistance in films. Films generally biodegraded within 30 days in soil, achieving between 50–80% mineralization. Both starch and lignocellulosic fiber degraded much more rapidly than PVA. Interestingly, addition of fiber to formulations enhanced the PVA degradation.  相似文献   

6.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

7.
Composite materials based on wastes of flat glass processing   总被引:1,自引:0,他引:1  
Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.  相似文献   

8.
Properties of Starch/PVA Blend Films Containing Citric Acid as Additive   总被引:8,自引:0,他引:8  
Starch/polyvinyl alcohol (PVA) blend films were prepared successfully by using starch, polyvinyl alcohol (PVA), glycerol (GL) sorbitol (SO) and citric acid (CA) for the mixing process. The influence of mixing time, additional materials and drying temperature of films on the properties of the films was investigated. With increase in mixing time, the tensile strength (TS), elongation (%E), degree of swelling (DS) and solubility (S) of the film were equilibrated. The equilibrium for TS, %E, DS and S value was 20.12 MPa, 36.98%, 2.4 and 0.19, respectively. The mixing time of equilibrium was 50 min. TS, %E, DS and S of starch/PVA blend film were examined adding glycerol (GL), sorbitol (SO) and citric acid (CA) as additives. At all measurement results, except for DS, the film adding CA was better than GL or SO because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA and additives. Citric acid improves the properties of starch/PVA blend film compared to glycerol and sobitol. When the film was dried at low temperature, the properties of the films were clearly improved because the hydrogen bonding was activated at low temperature.  相似文献   

9.
The influence of the blending ratio of biodegradable starch/polyvinyl alcohol (PVA)/glycerol in encapsulating urea has been investigated. It is found that water absorption capacity increased approximately 135 % as the amounts of starch, PVA and glycerol in the composite film increase. Therefore, the swell ability of the composite film is increased and the urea is released from the composite film in the wet environment. The FTIR shows that the urea had been encapsulated successfully in the composite films. Moreover, the soil burial biodegradation results indicated that the biodegradability of the starch/PVA/glycerol/urea composite film strongly depended on the PVA proportion in the composite film matrix. The DSC results show that the higher the amount of PVA in the composite film, the less change of the melting enthalpy value. The crystalline region of PVA remains after biodegradation.  相似文献   

10.
Jackfruit starch based biodegradable films containing lysozyme were characterized for their antimicrobial activity, thickness, solubility, water vapor permeability and mechanical properties. The biodegradable films had good appearance and antimicrobial activity against Micrococcus lysodeikticus. The thickness of the biodegradable films were not affected by the variation in pH, but the addition of lysozyme increased the thickness, the thickest films being those with the highest lysozyme concentrations. The variation in pH of the filmogenic solutions affected the solubility of the biodegradable films, water solubility being greatest at pH 7.0 and with the highest lysozyme concentration. The permeability of the biodegradable films was increased by incorporating lysozyme. The lysozyme concentration and pH variation caused changes in the mechanical properties. The addition of 8% lysozyme increased the tensile strength and Young’s modulus for all the pH values studied. With respect to the release of antimicrobial activity, the diffusion of lysozyme was shown to follow Fickian transport mechanism.  相似文献   

11.
Starch-based composite films have been proposed as food packaging. In this context, the study of non-conventional starch sources (sagu, Canna edulis Kerr) has worldwide special attention, because these materials can impart different properties as carbohydrate polymers. A thorough study of the matrices used (sagu starch and flour) was carried out. In the same way, thermoplastic starch (TPS)/PCL blend and thermoplastic flour (TFS)/PCL blend were obtained by melt mixing followed by compression moulding containing glycerol as plasticizer. In this study, chemical composition of the matrices and their properties were related with the properties of the developed films. Moisture content, water solubility, X-ray diffraction, thermogravimetric analysis and mechanical and microstructural properties were evaluated in the films. Taking into account the results, the sagu flour has great potential as starchy source for food packaging applications. However, concretely the flour had lower compatibility with the PCL compared to the starch/PCL blend.  相似文献   

12.
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.  相似文献   

13.
Carrageenan-based films demonstrate good performance, the raw materials for their production are abundant in nature and can be sustainably sourced from seaweeds. Similar to other naturally-derived biopolymers, however, carrageenans are relatively expensive to purify and form into useful materials. In order to potentially lower the production costs compared to pure carrageenan, semi-refined carrageenan (SRC) plasticized with 0–50% (w/w) glycerol was investigated using a solution casting method. The film color and opacity increased along with the moisture content, whereas the water vapor permeability decreased with increasing levels of glycerol. The tensile properties of the SRC films improved significantly, particularly at glycerol additions greater than 30% (w/w). Moreover, the addition of glycerol improved the thermal stability and altered the surface morphology of the films. In general, the properties of the SRC films were comparable with refined carrageenan films suggesting that SRC has potential to be furthered developed into more cost effective primary food packaging materials.  相似文献   

14.
Journal of Polymers and the Environment - Biopolymer-based films are hydrophilic biodegradable matrices that exhibit poor water vapour barrier. Ideally, water vapour permeability does not depend on...  相似文献   

15.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

16.
Chitosan (0.1–1%, w/w), dissolved in 2% acetic acid solution, was added into 1% methylcellulose (MC)-based formulation containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween?80. Films were prepared by casting. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient and water vapour permeability (WVP) of the films were measured. The PS value of 312 N/mm was observed for MC-based films containing 0.25% chitosan. Values of PD, viscoelasticity coefficient and WVP of these films were 5.0 mm, 44.1%, and 6.0 g mm/m2 day kPa, respectively. The MC-based films containing 0.25% chitosan were also exposed to gamma radiation (0.5–50 kGy). The PS of the treated films decreased significantly from 312 at 0 kGy to 201 N/mm when treated at a dose of 50 kGy. However, WVP values were not affected by increasing irradiation the dose used. The Fourier Transform Infrared spectroscopy supported the molecular interactions due to addition of chitosan in MC-based films. Thermo gravimetric analysis and differential scanning calorimetric experiments showed that thermal properties of the films were significantly improved by chitosan loading. Surface topography of the films was studied by scanning electron microscopy and found rougher due to chitosan addition.  相似文献   

17.
Journal of Polymers and the Environment - In this study eco-friendly composite films were prepared based on poly(vinyl alcohol) (PVA) containing different content of Basella alba stem extract (BA)...  相似文献   

18.
Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.  相似文献   

19.
Poly(lactic acid) is one of the most promising biobased and biodegradable polymers for food packaging, an application which requires good mechanical and barrier properties. In order to improve the mechanical properties, in particular the flexibility, PLA plasticization is required. However, plasticization induces generally a decrease in the barrier properties. Acetyl tributyl citrate (ATBC) and poly(ethylene glycol) 300 (PEG), highly recommended as plasticizers for PLA, were added up to 17 wt% in P(D,L)LA. In the case of PEG, a phase separation was observed for plasticizer contents higher than 5 wt%. Contrary to PEG, the Tg decrease due to ATBC addition, modelled with Fox’s law, and the absence of phase separation, up to 17 wt% of plasticizer, confirm the miscibility of PLA and ATBC. Contents equal or higher than 13 wt% of ATBC yielded a substantial improvement of the elongation at break, becoming higher than 300%. The effect of PLA plasticization on the barrier properties was assessed by different molecules, with increasing interaction with the formulated material, such as helium, an inert gas, and oxygen and water vapour. In comparison to the neat sample, barrier properties against helium were maintained when PLA was plasticized with up to 17 wt% of ATBC. The oxygen permeability coefficient and the water vapour transmission rate doubled for mixtures with 17 wt% ATBC in PLA, but increased five-fold in the PEG plasticized samples. This result is most likely caused by increased solubility of oxygen and water in the PEG phase due to their mutual miscibility. To conclude, ATBC increases efficiently the elongation at break of PLA while maintaining the permeability coefficient of helium and keeping the barrier properties against oxygen and water vapour in the same order of magnitude.  相似文献   

20.
Many polymers such as polyolefins (polyethylene, polypropylene), poly(vinyl chloride), aliphatic polyamides, poly(ethylene terephthalate), polycarbonate, and others are used as protective barrier films against the mass transport of small molecules of gases, vapors, and liquids (known as diffusates, permeants) in different applications. The barrier properties depend on the polymer characteristics such as solubility, diffusion, permeability, and others, the nature of the fluid, temperature, and other factors. Mainly polymer barrier film application in packaging, construction, and agriculture are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号