首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper was focused on the biosorption of phosphate ions from aqueous solution onto the cetyltrimethylammonium bromide (CTAB) modified multi-component biosorbent composed of pine, oak, hornbeam and fir sawdust biomasses. A series of batch tests were conducted and the effects of solution pH, ion concentration, quantity of biosorbent and contact time on the bioremoval of phosphate ions were investigated. The biosorption data of kinetic and equilibrium were modeled using various mathematical equations. The phosphate removal increased with increased ion concentration and decreased with increased pH and biosorbent quantity values. The equilibrium state was reached within 120 min of exposure time. The process kinetics was best described by Elovich model while the isotherm data of biosorption best obeyed Freundlich equation. The obtained results revealed that the use of CTAB modified mix sawdust biosorbent presented interesting options for bioremediation of contaminated environments and waste recycling (as nutrient fertilizer and compost material).  相似文献   

2.
Biosorption potential of new low cost biosorbent prepared from vegetable waste, composed of 1:1 mixture of potato and carrot peels for the removal of Ni(II) from aqueous solution was determined. The residual metallic ion concentrations were determined using an atomic absorption spectrophotometric technique (AAS). Batch experiments were conducted to optimize parameters such as initial pH, temperature, contact time, initial metal ion concentration and biosorbent dose and the results showed that maximum adsorption of Nickel (79.32 %) occurs when the contents were stirred for 75 min with 3.0 g of biosorbent at 35 °C and pH 4. Kinetic studies of the reaction revealed that it follows a pseudo-second order reaction. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fits well to data of Ni(II) biosorption by the prepared biomass as compared to the model of Freundlich. Both neat and Ni loaded biosorbent samples were analyzed by AAS using a dry ashing process in a furnace and also by use of a FT-IR spectrophotometer and an X-Ray florescence spectrometer in order to confirm the biosorption of Ni(II) and the results have revealed that a significant amount of Ni is present in the spent biosorbent.  相似文献   

3.
Ni(II) imprinted and non-imprinted bioadsorbent alginate beads were prepared, and utilized in the selective adsorption of Ni(II) ions. The optimum adsorption capacity were 6.00 mmol g?1 at 500 ppm initial metal ion concentration at pH 7 for Ni(II) imprinted alginate beads (IIP). The equilibrium data were applied to Langmuir and Freundlich adsorption isotherms, and it fitted both isotherm models. Thermodynamic parameters showed favorable and endothermic nature of adsorption. Ni(II) imprinted bead showed the strong ability to selective adsorption from Cu(II), Co(II) and Zn(II) ions. In conclusion, Ni(II) ion imprinted alginate beads could be used repeatedly without any significant reduce of adsorption capacity.  相似文献   

4.

In these studies, removal of Fe(III) ions by biosorption processes from aqueous solutions was carried out using paprika (Capsicum annuum L.) pomace generated during processing in the food industry. The biosorbent material was characterized using several analytical methods, including particle size distribution, XRD, SEM–EDS, electrokinetic zeta potential, surface area analysis (BET, BJH), thermogravimetry, morphology (SEM), spectrophotometry FT-IR. Several factors, such as biosorbent dosage, initial concentration, contact time and initial pH were analyzed to show an effect on the bioremoval process, efficiency and adsorption capacity. As a result, the maximum adsorption efficiency and capacity were determined to be 99.1% and 7.92 mg/g, respectively. Based on the kinetics analysis, the bioremoval process is better described by the Langmuir isotherm model and the pseudo-second order equation model. In conclusion, the achieved research results suggest that paprika biomass can be an effective material for efficiently removing iron(III) from wastewater and improving water quality. These studies on the recovery of iron metal from the environment fit in the latest trends in the concept of the global circular economy.

  相似文献   

5.
以海藻酸钠、明胶和海带粉为原料制备了固定化海带生物吸附剂。固定化海带生物吸附剂对Ni2+的吸附过程可分为3个阶段:快速吸附阶段、缓慢吸附阶段和吸附平衡阶段。动力学过程可用Lagergren准二级反应动力学方程描述,限速步骤为化学吸附。随Ni2+初始质量浓度的增加,固定化海带生物吸附剂的Ni2+吸附量逐渐增大,Ni2+去除率逐渐降低。吸附过程符合Langmuir和Freundlich吸附等温方程,说明该吸附体系既有物理吸附又有化学吸附,从吸附状态看属于多层吸附,由Langmuir吸附等温方程得出固定化海带生物吸附剂对Ni2+的最大吸附量为39.43mg/g,说明固定化海带生物吸附剂对Ni2+有较好的吸附性能。  相似文献   

6.
The present work reported on the evaluation of the methylene blue dye biosorption property of Tremella fuciformis under different experimental conditions. Batch mode experiments were carried out using different experimental parameters such as initial pH, dye concentration, biosorbent amount, contact time and temperature. Four widely used kinetic models were used to elucidate the biosorption kinetics. And the kinetic analysis illustrated that the experimental data best followed the pseudo-second-order kinetic model. Biosorption equilibrium was also investigated using four widely used isotherm models. The results indicated that the experimental equilibrium data fitted very well with Langmuir isotherm models. Thermodynamic analysis of biosorption processes was found to be feasibility, spontaneous and exothermic nature of MB biosorption. These results indicated that T. fuciformis would be a high effective and environmental friendly biosorbent for MB removal from aqueous solution.  相似文献   

7.

In this study, a novel and facile route for the synthesis of cyclodextrin-conjugated graphene oxide (CDs–GO) nanocomposites by esterification reaction in the presence of EDC/DMAP as catalyst, was developed. The formation of CDs–GO was successfully approved by FT-IR, SEM, TEM, TGA and BET analyses. Then competitive adsorption capacity of cadmium ion by CDs–GO composites and the impact of different empirical parameters like contact time, initial metal ion concentration, and initial pH on the adsorption process were studied. The results showed that β-CD–GO at pH 7 is suitable for removing Cd(II) with 90?% removal efficiency. Also, the adsorption capacity experiment at constant concentration of 50 ppm of Cd(II) showed that more than 50?% of Cd(II) ions could be adsorbed by γ-CD–GO reaching an equilibrium within 2 h. Therefore, the γ-CD–GO and α-CD–GO showed high adsorption capacity toward Cd2+ (222.22 mg/g) which were pointedly more than that of β-CD–GO (208.33 mg/g). Furthermore, adsorption kinetics, isotherm studies, and thermodynamic analyses were evaluated. The adsorption data exhibited excellent fit to the pseudo-second-order (R2?>?0.99) and Freundlich isotherm models.

  相似文献   

8.
The removal of a mixture of heavy (toxic) metal cations (copper, nickeland zinc) from liquid effluents was investigated in this study at pilotscale, using counter-current contact mode. The innovative processinvolved the abstraction of metal ions onto fungal biosorbents, followedby the application of flotation for the subsequent solid/liquid separationof biomass particles. The ability of microorganisms to remove metal ionsfrom aqueous solutions is a well-known phenomenon. Nevertheless,engineering considerations are very important in decisions, concerningthe commercial future of biosorption and practical solutions are neededfor certain problems, such as the efficient post-separation ofmetal-loaded biomass. The two processes (flotation and biosorption) caneffectively operate in combination, in what it was termed biosorptiveflotation process. The sorbents may be recycled, after appropriate elutionof metals, as well as the treated (clean) water.  相似文献   

9.
The ability of activated carbon from cassava peels to remove heavy metals like Cu(II) and Pb(II) from hospital wastewater was investigated. The study showed that a pH of 8 was the best for the sorption of both metal ions onto the biosorbent. The time-dependent experiments for the metal ions showed that the binding of the metal ions to the biomass was rapid and occurred within 20–120 min. Sorption efficiency increased with a rise in adsorbent dosage. It increased from 12 to 73 % for Pb(II) and 26 to 79 % for Cu(II) when the adsorbent dose increased from 2 to 12 g. An increase in temperature led to an increase in sorption for both metal ions. The Langmuir model showed that the biomass has a higher sorption capacity for Cu(II) than Pb(II), with q m = 5.80 mg g?1 for Pb(II) and 8.00 mg g?1 for Cu(II). The Freundlich isotherm K f was 1.4 for Pb(II) and 1.8 for Cu(II), indicating a preferential sorption of Cu(II) onto the biosorbent. Adsorption capacity was found to decrease with an increase in particle sizes. Sorption occurred by physical mechanisms and was mainly controlled by intraparticle diffusion.  相似文献   

10.
The synthesis and characterization of poly (acrylic acid) grafted pectin hydrogel followed by biosorption and desorption characteristics of cadmium, as a model heavy metal, have been studied. The grafted eco-friendly pectin based interpenetrating hydrogel was prepared in the presence of gluteraldehyde crosslinker under N2 atmosphere and characterized using 1H-NMR, FTIR, TGA and SEM techniques. Gluteraldehyde was found to form one-arm and two-arm crosslinks in the copolymer. Upon grafting, two-dimensional sheet structures bounded to tubular and vascular cylindrical rods were observed. The biosorption and desorption data, determined experimentally, were fitted to pseudo-second order reaction kinetics. At higher ionic strength values, the maximum metal uptake value (q max) was lowered and pseudo-second order rate constant (k 2) was increased. Whereas, at higher pH values the maximum metal uptake value (q max) was increased and Pseudo-second order rate constant (k 2) was decreased. 0.1?M HCl solution was a suitable eluent to regenerate the hydrogel surface and recover the adsorbed cadmium metal ions. Pectin based copolymer could be used as an efficient candidature biosorbent for the recovery of cadmium metal ions from aqueous solutions.  相似文献   

11.
The potential for biosorption of Hg(II) ions from aqueous solutions using water hyacinth was studied. The effect of the retention period (0, 1, 3, 7, and 15 days), pH (3, 5, 7, and 9), initial concentration of Hg(II) ions (5, 10, and 15 mg/L), and organic loading rate (25, 50, and 75 percent) on biosorption were investigated. The physicochemical parameters were also analyzed at various concentrations of Hg(II) ions before and after treatment. The maximum biosorption rate was obtained at 15 days with the initial concentration of 10 mg/L at a pH of 7 and organic loading rate of 50 percent. The maximum biosorption capacity of both water hyacinth roots and shoots were 5.5 mg/L and 3.8 mg/L, respectively. The Hg(II) biosorption data were analyzed using the first‐ and second‐order kinetic models. Pseudo second‐order kinetics was considered the most appropriate model for predicting the biosorption capacity of both water hyacinth roots and shoots, and the modeled results were compared to the experimental results. Langmuir and Freundlich isotherms were used to evaluate the experimental data, and their constants were derived. Biosorption equilibrium data were best described by the Langmuir isotherm model followed by the Freundlich model. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
In this study, dl-malic acid and hydrogen peroxide were used as leaching agents to remove metals from e-waste (printed-circuit boards) and itaconic acid-grafted poly(vinyl alcohol)-encapsulated wood pulp (IA-g-PVA-en-WP) to uptake metals from leachate with high proficiency [11.63 mg g?1; 93.03 % for Cd(II), 11.90 mg g?1; 95.18 % for Pb(II), and 12.14 mg g?1; 97.08 % for Ni(II)]. Metals were recovered from the loaded biosorbent by desorption studies. The standard analytical techniques, such as elemental analysis, Fourier-transform-infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis, were used to characterize the recovering agent (biosorbent). At equilibrium, the metal uptake data were fitted to Langmuir and D–R isotherms (R 2 > 0.99) significantly, revealing, the homogeneous distribution of active sites on biosorbent’s backbone. The possible mechanism appeared to be ion exchanges of metal ions with H+ together with binding over functionalities (COO?). Dimensionless equilibrium parameter (R L) showed the favourability of metal uptake at lower concentration, while mean adsorption energy (E) certified the physical binding of metal on functionalities which was further confirmed by sticking probability and activation energy parameters. Reusability studies were also conducted to state the performance of biosorbent.  相似文献   

13.
Graft copolymerization of methacrylic acid (MAc) onto cellulose triacetate (CTA) films was conducted by gamma rays. The grafting conditions were optimized. The structure of grafted CTA films was characterized by Fourier transform infra red–attenuated total reflection, scanning electron microscopy, thermal gravimetric analysis, CHNS/O microanalyzer and, surface area and porosity analyzer. The grafted CTA films were exploited in adsorption of ethyl violet (EV) and phenol red (PR) dyes. The adsorption capacity of the grafted CTA films was investigated at various variables. The adsorption isotherms and kinetic study were examined. Further, the dyed grafted CTA films were used in measurements of high dose radiation. The results indicate that the useful dose range extents up to 440 and 300 kGy for EV and PR, respectively. The effects of relative humidity during irradiation, shelf-life, pre- and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were investigated.  相似文献   

14.
生物吸附在染料废水处理中的应用   总被引:9,自引:0,他引:9  
生物吸附是微生物细胞和其它物质发生的一系列非发酵关联的吸附过程,其主要作用包括物理和化学吸附、静电作用、离子交换、络合、螯合、微量沉淀等。与生物降解相比,生物吸附不会产生有毒的代谢产物,为染料废水的处理和回收提供了一条经济可行的途径。综述了微生物对染料吸附的作用机制及影响因素如pH、温度、染料初始浓度等,介绍了生物吸附的发展现状及前景。  相似文献   

15.
Herein, we prepared alginate (SA)/carboxymethyl cellulose (CMC) gel beads through Ca2+ and glutaraldehyde (GA) crosslinking and investigated their adsorption performance on lysozyme from aqueous solution. Taking advantage of the abundant active carboxyl groups on SA and CMC, the obtained SA/CMC gel beads present an excellent integrated lysozyme adsorption performance with a high capacity of 236.34 mg g?1, short equilibrium time of 8 h, ease of elution, and good reusability. Furthermore, the resultant SA/CMC gel beads also possess unique selectivity for positively charged proteins, confirmed by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Considering the nature of biopolymers and advantages of favorable physical properties, high efficiency, cost-effectiveness, intriguing adsorption capacity and easier separation from the reaction system, the SA/CMC gel beads may find more potential in protein separation and purification than that of synthetic material.  相似文献   

16.
The enzyme assisted extraction conditions of polysaccharide from Cordyceps militaris mycelia were firstly investigated by kinetics analysis and the optimal operating was found to be: extraction temperature 40 °C; solid-solvent ratio 1:20; extraction pH 4.0; cellulase concentration 2.0%. The polysaccharide extraction yield was 5.99% under these optimized conditions. Furthermore, a fundamental investigation of the biosorption of Pb2+ from aqueous solution by the C. militaris polysaccharide was performed under batch conditions. The suitable pH (5.0), polysaccharide concentration (0.20 g L?1), initial Pb2+ concentration (300 mg L?1) and contact time (40 min) were outlined to enhance Pb2+ biosorption from aqueous medium. The Langmuir isotherm model and pseudo first order kinetic model fitted well to the data of Pb2+ biosorption, suggesting the biosorption of Pb2+ onto C. militaris polysaccharide was monolayer biosorption and physical adsorption might be the rate-limiting step that controlled the adsorption process. FTIR analysis showed that the main functional groups of C. militaris polysaccharide involved in adsorption process were carbonyl, carboxyl, and hydroxyl groups.  相似文献   

17.
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.  相似文献   

18.
Calcium alginate hydrogel was prepared and used as a biosorbent for the removal of oil from aqueous solutions. Calcium alginate hydrogel was further chemically modified by esterification with maleic anhydride. The changes in the physicochemical properties of maleic anhydride modified calcium alginate were investigated via multiple techniques (FTIR, SEM, BET and DSC/TGA). Adsorption batch experiments were carried out to compare the oil adsorption capacities of native and modified calcium alginates. Adsorption experiments were carried out as a function of solution pH, temperature and ionic strength to determine the optimal conditions for the adsorption of oil. Equilibrium and kinetic studies were conducted for the modified alginate. Results revealed that the maleic anhydride modification of calcium alginate improved its adsorption capacity towards oil. Higher adsorption capacities of modified alginate were attained at lower temperatures (20 °C), higher ionic strengths (1.0 M NaCl) and within the pH range of 5–9. The oil adsorption data obtained for modified alginate could be better described by the first order kinetic model (R2?=?0.981) and the BET equilibrium isotherm (R2?=?0.984). The maximum monolayer adsorption capacity predicted by the BET model for the modified calcium alginate was found to be 143.0 mg/g.  相似文献   

19.
Chitosan (Chi) beads were conjugated with three different amino acids [namely, glutamic acid (GLU), methionine (MET), and taurine (TAU)] aiming to increase the divalent copper ions uptake in aqueous media. Scanning Electron Microscopy evidenced the development of a large porous structure after amino acid functionalization, associated with the increase in a number of amino groups in the polymer backbone. X-Ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectra analyses were also employed to assess the conjugation of these three different amino acids in chitosan backbone. Adsorption experiments were conducted in a batch process, at 298 K, and kinetic data indicated a slightly better fitting for the pseudo-first-order model when compared to pseudo-second order. Intraparticle diffusion model suggested a three-step mechanism for Cu(II) adsorption kinetics, limited by the third step, the intraparticle diffusion. The isotherm data fitting to the traditional Langmuir and Freundlich models indicated a better fit for the former case. The amino acid conjugation resulted in the increase of the maximum adsorption capacity for Cu(II) from 1.30 mmol g?1 prior to amino acid conjugation to values as high as 2.31 mmol g?1, 2.40 mmol g?1 and 2.68 mmol g?1 for Chi–TAU, Chi–GLU, and Chi–MET, respectively. These results are attributed to the introduction of additional amino groups and new carboxylate and amino acid residues into the chitosan backbone, which might also be explored for amino acid demanding applications.  相似文献   

20.
We have successfully prepared a bead-type adsorbent from two materials with different adsorption characteristics. Heavy metals were removed by greatly swollen egg shell membrane-conjugated chitosan beads. The egg shell membrane accumulated and removed precious metal ions from a dilute aqueous solution with a high affinity in a short contact time. Experiments suggested that chitosan beads could take up gold ions with great capacity and selectivity by conjugation with egg shell membrane. Under certain conditions, the selective removal of gold and copper in a mixture of gold and copper ions by egg shell membrane-conjugated chitosan beads was 100% and 2%, respectively. Egg shell membrane-conjugated chitosan beads can be seen as a promising material to recover gold in wastewater from various industries, such as electroplating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号