首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
通过吸附和解吸试验,研究了不同磷吸附量石灰性褐土对锌镉次级吸附和解吸的影响。结果表明,次级吸附锌和镉对不同吸附量磷土壤的磷解吸量随磷吸附量的增加而增加,而磷解吸量随次级吸附后锌、镉浓度的增加而降低,即随锌镉添加量的增加,磷的有效性有所降低。土壤对锌的次级吸附量和吸附率随磷吸附量的增加先降低后升高,并随添加镉浓度的增加而降低,解吸量和解吸率随磷吸附量的增加而增加,说明在正常施磷范围内,增加磷的施用量能提高土壤中锌的有效性,同时,土壤对高浓度锌的次级吸附率小于低浓度锌的次级吸附率,而土壤对高浓度锌的解吸量和解吸率要远大于对浓度锌的解吸量和解吸率;土壤对镉的次级吸附量、吸附率和解吸量、解吸率都随着磷吸附量的增加而增加,且吸附量随添加镉的量增加而增加,但镉次级吸附量和吸附率随添加锌浓度的增加而减小,解吸量和解吸率却增大,说明在磷吸附量相同的条件下,添加锌促进了镉的有效性。  相似文献   

2.
土壤环境中重金属元素的相互作用及其对吸持特性的影响   总被引:55,自引:3,他引:55  
本文用正交试验法研究了Cd,Pb,Cu,Zn、As五种元素复合作用时土壤颗粒的吸附解吸特性.结果表明:供试元素的吸附过程均符合Langmiur方程,其吸持能力依次为Pb>As>Cu>Zn>Cd,而最大吸附量顺序正好相反.Cd,As为复合污染的主要因子,同时还显著地影响其它元素的吸附解吸过程.土壤对重金属元素的吸附和解吸量不仅与平衡溶液中元素浓度有关,而且还明显地受共存元素及其交互作用的影响,交互作用的结果与元素间的相对浓度及其比例有关.AsO_4~(3-)的存在使Cd,Pb,Cu,Zn的吸附解吸过程变得极为复杂,这可能与产生重金属盐沉淀和次级吸附和解吸有关.  相似文献   

3.
pH和添加有机物料对3种酸性土壤中磷吸附-解吸的影响   总被引:8,自引:0,他引:8  
研究了pH和添加有机物料对红壤、砖红壤和水稻土中磷吸附-解吸的影响。结果表明,砖红壤和水稻土中磷的吸附量和解吸量均随pH的升高而降低,pH对红壤中磷吸附和解吸的影响很小。土壤阳离子交换量(CEC),铁、铝氧化物含量和有机质含量是影响磷吸附的主要因素。红壤的CEC和有机质含量很低,铁、铝氧化物含量高,因而对磷的吸附量最高。砖红壤和水稻土CEC较高,土壤表面对磷的排斥作用较大,而且较高含量的有机质覆盖了土壤表面的磷吸附位,因此这2种土壤对磷的吸附量低于红壤。添加稻草并进行恒温培养可使红壤和水稻土对磷的吸附量显著减少,但对砖红壤中磷吸附的影响较小。添加稻草使土壤磷的解吸量和解吸率增加,从而增加了土壤中吸附性磷的活性。  相似文献   

4.
有机酸解吸土壤及矿物表面Cd的动力学特征   总被引:2,自引:0,他引:2  
利用流动搅动法研究几种有机酸对土壤和矿物表面Cd的解吸动力学特征.结果表明,有机酸对Cd的解吸可能有质子的交换和溶解作用,以及有机配体与胶体表面对Cd的竞争作用.在40-50min内,红壤和针铁矿表面Cd的解吸达到稳态,而砖红壤和高岭土上并未达到稳态.柠檬酸、苹果酸、酒石酸和草酸对Cd的解吸率在红壤土上分别为86%,96%,93%和61%;在砖红壤上分别为86%,80%,69%和64%;在针铁矿上分别为94%,93%,86%和87%;在高岭土上分别为34%,41%,35%和42%.用双指数方程和一级动力学方程能更好地拟合Cd的解吸过程.不同有机酸解吸Cd的快反应速率常数为酒石酸、柠檬酸〉苹果酸〉草酸,慢反应速率常数为苹果酸〉柠檬酸、酒石酸〉草酸.除质子溶解作用外,有机配体与胶体表面对Cd的竞争力不同也是导致Cd解吸速率和解吸量差异的原因之一.  相似文献   

5.
pH对黄棕壤重金属解吸特征的影响   总被引:25,自引:5,他引:25  
徐明岗  李菊梅  张青 《生态环境》2004,13(3):312-315
对黄棕壤在pH 4~7不同吸附量下6种典型重金属(Cu2+、Zn2+、Cd2+、Pb2+、Co2+、Ni2+)的解吸进行了测定。结果表明,6种重金属的解吸量随吸附量增加而线性增大,解吸量随pH升高而增加,但解吸量占吸附量的比例随pH升高而降低。在试验条件下,黄棕壤吸附Cu2+、Zn2+、Cd2+、Pb2+、Co2+、Ni2+的平均解吸率分别为8.6%、14.3%、74.1%、9.2%、42.1%和36.9%,表明黄棕壤对6种重金属的专性吸附选择性和亲和力顺序为Cu2+、Pb2+ > Zn2+ > Co2+ > Ni2+ > Cd2+。  相似文献   

6.
三峡水库消落区土壤汞吸附解吸动力学特征   总被引:2,自引:0,他引:2  
对三峡水库消落区5种土壤进行了汞的吸附-解吸试验,用不同的等温吸附方程和化学反应动力学方程进行了模拟比较,结果显示,不同土壤对汞的吸附解吸动力学规律相类似,吸附速率和解吸速率均与土壤pH值呈显著(r=0.933,p<0.05)和极显著相关性(r=0.962,p<0.01),但吸附量和解吸量各不相同,其中,紫色潮土对汞的吸附量最大,酸性紫色土最小;灰棕潮土对汞的解吸量最大,黄壤最小,其它类型土壤介于它们之间.  相似文献   

7.
用一次平衡实验法研究砷酸根对Cd(Ⅱ)在红壤表面吸附和解吸的影响,结果表明,加入砷酸根使土壤对Cd(Ⅱ)的吸附量和解吸量均增加,且随着砷酸根加入量的增加,土壤对Cd(Ⅱ)的吸附增量和解吸增量也均增加.当向体系中加入砷酸根后,红壤胶体的Zeta电位显著降低,说明胶体颗粒表面的净负电荷增加.这说明砷酸根主要通过自身吸附增加了土壤表面的净负电荷,从而增加了土壤对Cd(Ⅱ)的静电吸附量.研究结果还表明,在pH 3.5-6.0范围内,砷酸根均表现出对Cd(Ⅱ)吸附的显著促进作用,说明砷酸根与Cd(Ⅱ)在红壤表面的协同作用可以在比较宽的pH范围内发生.  相似文献   

8.
张宇峰  夏阳  崔志强  骆永明 《生态环境》2010,19(8):1960-1963
近年来酸雨危害频繁发生,特别是长江三角洲地区,酸雨致使土壤中重金属锌的吸附和解吸发生了一定的变化。选取具有代表性的长江三角洲地区4种典型土壤,通过加入外源重金属锌培育污染土样,在不同pH的酸雨下对已污染土样进行解吸。通过实验探究土壤母质对于重金属锌的吸附及解吸的特点,为国家制定土壤标准提供可靠的数据支持。结果表明:土壤中锌的解吸量随着pH的降低而增加;比较不同母质发育而成的土壤,在pH=4.0、5.6模拟已污染土壤中锌的解吸量顺序为:沟沟堆积母质〉湖相沉积物母质〉河相沉积物母质〉海相沉积物母质。在pH=2.0、3.0时,河相沉积物母质、湖相沉积物母质解吸量迅速增加,超过海相沉积物母质锌的解吸量。  相似文献   

9.
土壤对恩诺沙星的吸附和解吸特性研究   总被引:9,自引:0,他引:9  
恩诺沙星是第一个动物专用的氟喹诺酮类药物,在畜禽养殖业中应用非常广泛。恩诺沙星进入畜禽体后,其原形及活性代谢物会随畜禽的排泄物进入环境,对环境生物产生影响。文章研究了恩诺沙星在土壤中的吸附和解吸规律,为恩诺沙星的生态风险评价提供依据。试验分3组,各组土壤分别采自菜园、水稻田和果园。在离心管中称取1 g土壤样品,加入恩诺沙星系列标准溶液,在25±0.5℃条件下机械振摇,用高效液相色谱(HPLC)法测定水相中恩诺沙星的含量,分别求出土壤对恩诺沙星的吸附和解吸平衡时间及其对恩诺沙星的吸附和解吸量。结果表明,土壤对恩诺沙星的吸附和解吸平衡时间分别为34 h和44 h;土壤对恩诺沙星的吸附性很强,对恩诺沙星的吸附量占水相中恩诺沙星总量99%以上,其吸附机理符合Freundlich平衡吸附方程wS=kfρe1/n;土壤对恩诺沙星的解吸具有浓度依赖性,其解吸量仅为吸附量的1‰左右,表明恩诺沙星在土壤中的迁移能力弱,不易污染地下水。  相似文献   

10.
高pH值是宁夏引黄灌区盐碱化土壤的显著特征,研究盐碱化土壤的高pH值对不同重金属元素的富集和释放规律,可为宁夏引黄灌区盐碱化土壤重金属污染的控制及治理提供科学依据。通过调节pH值,采用土柱淋溶的方法,模拟盐碱化土壤的Cd和Pb的吸附-解吸过程,研究pH对盐碱化土壤重金属Cd、Pb吸附-解吸特征、形态和生物活性的影响。结果表明:在试验设定的pH范围内,盐碱化土壤对Cd的吸附量随着pH值的升高而呈升高趋势,在pH值为8时达到峰值,对Pb的吸附量随pH的升高呈波动状变化状态,在pH值为10时达到峰值;同时,Cd的解吸量随吸附量增加而线性增大,解吸量随pH升高而增加,但解吸量随吸附量变化而变化的幅度随pH值的升高而减小,Pb的解吸量随吸附量增加而呈选择性增加。随着pH的升高,Cd可交换态和碳酸盐结合态的含量变化趋势相反,生物活性基本不变,其Fe/Mn氧化物结合态、有机结合态和残渣态的含量不变;Pb可交换态和碳酸盐结合态的含量随着pH的升高而升高,生物活性增强,有机结合态的含量减少,Fe/Mn氧化物结合态和残渣态的含量不变。宁夏引黄灌区盐碱化土壤的高pH值可以降低土壤对重金属Cd、Pb的吸附,缓解重金属污染引起的生态、粮食及其食品安全压力。  相似文献   

11.
The objective of this experiment was to study the effects of malic, tartaric, oxalic, and citric acid on the adsorption and desorption characteristics of Cd by two typical anthropic soils (lou soil and irrigation-silted soil) in North-west China. Cadmium adsorption and desorption were studied under a range of temperatures (25°C, 30°C, 35°C, 40°C), organic acid concentrations (0.5–5.0 mmol·L-1), and pH values (2–8). The results showed that the Cd adsorption capacity of the lou soil was significantly greater than that of the irrigation-silted soil. Generally, Cd adsorption increased as the temperature increased. In the presence of NaNO3, the adsorption of Cd was endothermic with ΔH values of 31.365 kJ·mol-1 for lou soil and 28.278?kJ·mol-1 for irrigation-silted soil. The endothermic reaction indicated that H bonds were the main driving force for Cd adsorption in both soils. However, different concentrations of organic acids showed various influences on the two soils. In the presence of citric acid, chemical adsorption and van der Waals interactions were the main driving forces for Cd adsorption rather than H bonds. Although the types of organic acids and soil properties were different, the effects of the organic acids on the adsorption and desorption of Cd were similar in the two soils. The adsorption percentage of Cd generally decreased as organic acid concentrations increased. In contrast, the adsorption percentage increased as the pH of the initial solution increased. The exception was that adsorption percentage of Cd increased slightly as oxalic acid concentrations increased. In contrast, the desorption percentage of Cd increased with increasing concentrations of organic acids but decreased as the initial solution pH increased.  相似文献   

12.
邵兴华  张建忠  王艾平 《生态环境》2010,19(10):2355-2359
采用室内培养法研究了淹水对2种酸性红壤(旱地红壤、水稻土)磷吸附解吸特性及草酸可提取态P的影响。淹水培养实验中,2种土壤分别淹水0(对照),1、2、3、4、8周,淹水培养结束后进行P吸附解吸实验,解吸实验结束后测定土样中草酸可提取态P。结果表明:与氧化状态相比,淹水后旱地红壤P吸附量减少,水稻土淹水1、2、3周P吸附量高于氧化状态,继续淹水4和8周后P吸附量减少。淹水前后旱地红壤P吸附量均大于水稻土。用简单Langmuir方程拟合P等温吸附曲线,除淹水4周外,P最大缓冲容量(MBC)随淹水时间延长而降低。结合能常数(K)淹水前后的变化规律性差。2种土壤P解吸量随加入P量增加而增加。氧化、还原状态下,2种土壤酸性草酸铵可提取P均远远大于CaCl2解吸P,虽然水稻土吸附P量低于旱地红壤,但P解吸量无论是CaCl2解吸P还是酸性草酸铵可提取P均大于旱地红壤,主要原因在于水稻土全P及速效P含量大于旱地红壤。淹水后草酸可提取态P增加,吸附P的释放和被新近形成的铁氧化物再吸附是淹水后草酸可提取态P增加的主要原因。  相似文献   

13.
调查了上坝村重污染区的上樟组、群樟组和群联组共29个井水中的pH、Eh和重金属.结果表明,上坝村井水的Cu、Pb含量不超标,但Zn、Cd和Mn浓度均值分别是国家生活饮用水卫生标准的1.24倍、1.96倍和10.8倍;Zn、Cd、Mn的浓度和Eh值随着水井离横石河越远而越低,即呈现上樟组群樟组群联组的关系;当Eh小于300mV或上樟组pH值大于5.5、群樟组pH值大于4、群联组pH值介于5.1—5.4时,随着Eh的降低或pH值升高,井水中Zn、Cd、Mn的浓度急剧下降且趋向零.  相似文献   

14.
干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征   总被引:7,自引:0,他引:7  
土壤重金属吸附解吸是影响土壤系统中重金属移动性和归宿的主要过程,影响重金属的生物有效性以及重金属在食物链中的传递等.配制一系列不同浓度的重金属,灌漠土对重金属溶液进行吸附实验24 h以达到平衡,再用硝酸铵和乙酸铵进行解吸实验24 h以达到平衡.利用热力学吸附平衡法,对西北干旱区绿洲灌漠土重金属Cu、Ni和Pb的吸附解吸行为进行序批实验研究.实验结果表明:(1)灰漠土在常温下对铜、锌和铅重金属离子的吸附等温线符合Freundlich型吸附模式,灰漠土对重金属铜、锌和铅的吸附能力由强到弱的顺序为:铅,铜,锌.(2)硝酸铵和乙酸铵解吸重金属的量与灰漠土吸附重金属量呈现出线性正相关,乙酸铵解吸重金属的量比硝酸铵解吸重金属的量大,两种解吸剂对铜、锌和铅重金属离子的解吸能力由大到小的顺序都为:铜,锌,铅,说明了一般外源的铜、锌和铅进入土壤以后,铜和锌可能比铅容易向四周转移.(3)硝酸铵和乙酸铵的解吸率呈谷形曲线,开始时硝酸铵和乙酸铵解吸重金属量的百分比随灰漠土吸附重金属量的增加而减小,在吸附量达到某一特定值时,解吸率随吸附量的增加而增加.灰漠土对铜、锌和铅的吸附作用以专性吸附为主,被灰漠土吸附的铜、锌和铅重金属离子较难解吸.  相似文献   

15.
低分子量有机酸对可变电荷土壤吸附铝的影响机制   总被引:3,自引:0,他引:3  
徐仁扣  姜军 《生态环境》2005,14(2):253-256
通过吸附性铝的解吸实验研究了低分子量有机酸对三种可变电荷土壤(2种砖红壤和1种赤红壤)吸附铝的影响机制,结果表明,柠檬酸、苹果酸和酒石酸等带有3个及3个以上活性官能团的有机酸在低pH条件下可以通过形成土壤一有机酸一铝三元表面络合物和增加土壤的表面负电荷两种机制显著增加土壤对铝离子的吸附量,但以前一种影响机制为主。乳酸、水杨酸、草酸和丙二酸等带有2个活性官能团的有机酸仅通过改变土壤的表面负电荷影响铝的吸附。土壤氧化铁是土壤吸附有机酸的主要载体,当用化学方法将土壤中的氧化铁除去后,有机酸对铝吸附的影响变小。在pH5.0时有机酸主要通过形成可溶性有机铝络合物减小土壤对铝的吸附,但有机酸的存在增加了Al^3 在吸附性铝中所占的比例,导致铝的解吸率增加。土壤中大量氧化铁的存在使其即使在低pH下也能对铝离子发生专性吸附,导致吸附性铝的解吸率减小。  相似文献   

16.
东北污灌区草甸棕壤吸附重金属铅的形态分布及解吸行为   总被引:4,自引:0,他引:4  
以沈阳市沈抚污灌区的草甸棕壤为模型土,采用Tessier顺序提取法分析了吸附重金属Pb(Ⅱ)在土壤中的化学形态分布特点,研究了吸附Pb(Ⅱ)的解吸行为,特别考察了冷冻对吸附Pb(Ⅱ)化学形态分布及解吸行为的影响.研究表明,吸附Pb(Ⅱ)在东北草甸棕壤上的化学形态分布规律为:可交换态碳酸盐结合态铁锰氧化物结合态有机结合态残渣态;吸附Pb(Ⅱ)的解吸动力学过程可分为快速和慢速两个阶段,符合准二级动力学方程;冷冻对吸附Pb(Ⅱ)的形态分布基本无影响,而对平衡解吸率有明显影响,随冷冻时间延长,平衡解吸率逐渐降低;随pH值减小,平衡解吸率增大;pH值在5—10范围内,平衡解吸率变化幅度相对很小,而pH值低于5后,平衡解吸率急剧增大.随离子强度增大,平衡解吸率先急剧上升,后趋于平缓.提出Pb(Ⅱ)在东北草甸棕壤上的吸附机理:化学吸附和静电吸附,后者又可分为静电键合吸附和离子交换吸附.在实验条件下,静电吸附约占75%,化学吸附约占25%.  相似文献   

17.
土壤中砷和镉同时存在的现象普遍存在,但目前对砷酸根与Cd(II)在可变电荷土壤表面协同作用的机制还了解不多。用一次平衡法研究了288 K和308 K温度条件下Cd(II)在昆明砖红壤表面的吸附动力学,比较了加入砷酸根对Cd(II)吸附动力学的影响。结果显示,加As(V)和升高温度均不仅增加Cd(II)的吸附量,而且提高了吸附反应的速率。Cd(II)在砖红壤表面的吸附反应进行的特别快,几乎在30 min内达到准平衡,假二级动力学方程能很好拟合30 min内的吸附动力学数据(r2>0.999 5)。从反应速率常数计算得到的活化能的结果表明,加As(V)显著降低了Cd(II)吸附反应的活化能,这是As(V)促进可变电荷土壤吸附Cd(II)的根本原因。  相似文献   

18.
Lab-scale experiments were conducted to investigate the effects of dissolved organic matter (DOM) on the desorption of Cd in freeze–thaw treated Cd-contaminated soils. The results indicated that DOM significantly facilitated the desorption of Cd from freeze–thaw treated soils when comparing with that of non-frozen soils. Effects of DOM on the Cd desorption were highly dependent on the soil type and contamination concentration. The maximum desorption ratios of Cd by DOM generated from straw and sludge were 15.6% and 13.65%, respectively, in brown soils, and the maximum desorption ratios reached 14.7% and 9.3%, respectively, when using black soils through the same treatment. The higher the Cd contamination concentration in soils, the higher the ratio of Cd desorption by DOM. This was because of the integrated effects of the soil properties changed by the freeze–thaw treatment and the species transformation of Cd. The characteristics of DOM, such as its concentration and properties, had shown obvious impacts on the Cd desorption by DOM. The desorption was promoted with the increased DOM concentration and the hydrophilic fraction, and lowered pH and the low-molecular-weight of DOM.  相似文献   

19.
长三角和珠三角农业土壤对Pb、Cu、Cd的吸附解吸特性   总被引:6,自引:0,他引:6  
研究了长江三角州和珠江三角州10种代表性农业土壤对重金属Pb、Cu和Cd的吸附与解吸特性。结果表明:大多数土壤对重金属有较强吸附能力,土壤性质对重金属吸附与解吸行为有很大影响。其中,pH值是影响土壤对重金属吸附与解吸的最重要因素,土壤重金属吸附量随pH值增加而增加。土壤pH值和有机质或粘粒含量较高的土壤(如乌栅土、青紫泥田、黄斑田),其对重金属吸附能力高于pH值和有机质或粘粒含量较低的土壤(如黄筋泥、粉泥田)。重金属解吸量随重金属吸附量和土壤重金属饱和度增加呈指数增加趋势;土壤对重金属的吸附能力从强至弱依次为Pb、Cu、Cd;当3种重金属共存时,重金属之间竞争能力强弱顺序与吸附能力顺序相同。重金属之间竞争作用随土壤酸度和重金属污染程度的增加而增强。  相似文献   

20.
徐明岗 《生态环境》2001,10(2):111-114
对不同浓度KCl和不同pH下,3种可变电荷土壤和4种恒电荷土壤Cl-吸附量进行了测定。结果表明,土壤Cl-吸附量随平衡Cl-浓度C(e)增加而增大,恒电荷土壤呈线性,可变电荷土壤在添加Cl-0.5~5.0mmol/L下,符合Langmuir吸附等温式。同一浓度下的Cl-吸附量及其随浓度增加的速率均为砖红壤>红壤>赤红壤>黄棕壤>棕壤、暗棕壤和黑土,与这些土壤所带正电荷量顺序相一致。Langmuir方程K值较小且几种土壤差异不大。恒电荷土壤对Cl-的吸附量很小,在浓度较低时常出现负吸附,其吸附机理可能更多的是与K+吸附时的同时吸附。7种土壤Cl-吸附量均随pH增加而降低,但降低强度可变电荷土壤远大于恒电荷土壤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号