首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.  相似文献   

2.
This paper presents the development of a regional flow simulation model of the stream–aquifer system of Ismarida plain, northeastern Greece. It quantifies the water budget for this aquifer system and describes the components of groundwater and the characteristics of this system on the basis of results of a 3-year field study. The semiconfined aquifer system of Ismarida Lake plain consists of unconsolidated deltaic clastic sediments, is hydraulically connected with Vosvozis River, and covers an area of 46.75 km2. The annual precipitation ranges in the study area from 270 to 876 mm. Eighty-seven irrigation wells are densely located and have been widely used for agricultural development. Groundwater flow in this aquifer was simulated with MODFLOW. Model calibration was done with observed water levels, and match was excellent. To evaluate the impacts of the current pumping schedule and propose solutions, four management scenarios were formulated and tested with the model. Based on model results, the simulated groundwater budget indicates that there must be approximately 33% decrease of withdrawals to stop the dramatic decline of groundwater levels. The application of these scenarios shows that aquifer discharge to the nearby river would be very low after a 20-year period.  相似文献   

3.
A fuzzy logic approach has been developed to assess the groundwater pollution levels below agricultural fields. The data collected for Kumluca Plain of Turkey have been utilized to develop the approach. The plain is known with its intensive agricultural activities, which imply excessive application of fertilizers. The characteristics of the soils and underlying groundwater for this plain were monitored during the years 1999 and 2000. Additionally, an extensive field survey related to the types and yields of crops, fertilizer application and irrigation water was carried out. Both the soil and groundwater have exhibited high levels of nitrogen, phosphorus and salinity with considerable spatial and temporal variations. The pollution level of groundwater at several established stations within the plain were assessed using Fuzzy Logic. Water Pollution Index (WPI) values are calculated by Fuzzy Logic utilizing the most significant groundwater pollutants in the area namely nitrite, nitrate and orthophosphate together with the groundwater vulnerability to pollution. The results of the calculated WPI and the monitoring study have yielded good agreement. WPI indicated high to moderate water pollution levels at Kumluca plain depending on factors such as agricultural age, depth to groundwater, soil characteristics and vulnerability of groundwater to pollution. Fuzzy Logic approach has shown to be a practical, simple and useful tool to assess groundwater pollution levels.  相似文献   

4.
A part of the Gangetic Alluvial Plain covering 2,228 km2, in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km2, affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of—(1) cummulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.  相似文献   

5.
In this study, land use change and its effects on level and volume of groundwater were investigated. Using satellite images and field measurements, change in land uses was determined from 1998 to 2007. By analyzing the observation wells data and preparing the zoning maps in GIS, groundwater level fluctuations were assessed. Considering the area corresponding to these fluctuations, changes in aquifers volume were calculated. The rain gauge and synoptic stations data were used to calculate meteorological parameters and evapotranspiration. The water requirement of the main crops was determined by CROPWAT software. Results showed an increase in average rainfall and crops water requirement. The classification of satellite images showed that 11,800 ha was increased in lands under irrigated crops cultivation, while 27,655 ha of rangeland was declined in the region. Groundwater levels dropped an average of 7 m, equal to 63.4 MCM reductions in volume of water in the aquifer.  相似文献   

6.
When population is increasing, characterizing the optimal water consumption path is complicated by the fact that the underlying dynamics of the water stock is contingent on the level of the stock itself. We propose a method of constructing the optimal path in this case. Since population is increasing, the optimal consumption path may involve refraining at times from consuming the totality of the surface water flow in order to restock in groundwater for future consumption. The aquifer then serves as a means to achieve welfare increasing intertemporal transfers of surface water. Therefore the aquifer itself, as distinct from the stock of water it serves to store, may have value and the marginal valuation of water when groundwater stocks are being drawn upon should, for this reason, differ at times from the marginal valuation of water when it is drawn strictly from surface water.  相似文献   

7.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

8.
Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.  相似文献   

9.
Cross-shore interactions between the ocean and a coastal aquifer have been studied extensively, whereas the corresponding along-shore case has seldom been examined. This paper presents a numerical model that simulates two-dimensional groundwater flow averaged over the thickness of a coastal aquifer. The model is used to examine the essential features of tide-induced, along-shore effects on an aquifer adjacent to a cross-shore river. The results show that the tide, which fluctuates the water level in the river, induces groundwater table fluctuations and oscillating flows in the along-shore direction. This occurs even at locations much further inland than tidal cross-shore fluctuations can propagate. However, the magnitude of along-shore water table fluctuations and flow velocity at a given cross-shore distance decreases with the distance from the river in the same manner as cross-shore tidal fluctuations. The along-shore groundwater flow, together with the cross-shore flow, forms horizontal circulation and increases mixing of solute in the aquifer. Over a tidal period, a large amount of water exchange occurs at the river-aquifer and ocean-aquifer interfaces, leading to increased transfer of chemicals between the three water bodies. These results have implications for the management of waste discharge in estuaries and coastal aquifers.  相似文献   

10.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

11.
Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called “susceptibility to groundwater quality degradation”. The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a “manual” selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID?+?PDA).  相似文献   

12.
This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.  相似文献   

13.
The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.  相似文献   

14.
This study investigated the arsenic (As) level in groundwater, and the characteristics of aquifer sediment as related to the occurrence of As in groundwater in Hanam, Vietnam. The deposition and transport of As-containing substances through rivers were also examined. Arsenic concentrations in 88% of the groundwater samples exceeded the As limit for drinking water based on the WHO standards. The dominating form of arsenic was As(III). The maximum total As content in bore core sediment was found in a peat horizon of the profiles and generally, elevated levels of As were also found in other organic matter-rich horizons. Total As contents of the bore core sediments were significantly correlated with crystalline iron oxide, silt and clay contents, suggesting that As in aquifer sediment was mainly associated with iron (hydr)oxides and clay mineral. In the groundwater, As concentration showed significant correlations with the total concentrations of Fe and HCO (3)(-). Significant correlations between HCl-extractable As and non-crystalline Fe oxide, total C, N, and S were also observed in the profiles. The results support the hypothesis that under favorable reductive conditions established by the degradation of organic matter, the dissolution of iron (hydr)oxides releases adsorbed As into the groundwater. The deposition of As in the sediments from the Red River were significantly higher than that in the Chau Giang River, suggesting that the Red River is the main source of As-containing substances deposited in the study area.  相似文献   

15.
The research was aimed at determining the depth to the watertable, aquifer thickness and subsurface geology of the studyarea thus revealing its groundwater distribution as well as its potential as a substitute to the surface water resources.Vertical electrical soundings were carried out in the study area with maximum electrode spread. The Schlumberger electrode configuration technique was adopted. VES data were processedusing Schlumberger analysis package. Lithologic logs of alreadyexisting boreholes in the study area were collected, evaluatedand comparison were carried out. The results reveal alternatinglayers of sands, sandstones, gravel and clay. The lithologiclogs revealed that the study area is underlain by coastal sands (Benin formation). The water table varies from 10–64 m and thickness of the aquifer ranges from 20–80 m. Results show that the study area is underlain by a thick extensive aquifer that has a transmissivity of 2.8 × 10-2m2 s-1 to 3.3 × 10-1m2 s-1 and storativity 1.44 × 10-4 to 1.68 × 10-3m s-1 values. The specific yield is about 0.31.The sandy component of the study area forms more than 90% ofthe sequence, therefore the permeability, the transmissivity andthe storage coefficient are high with an excellent source of groundwater resources.  相似文献   

16.
High-frequency, long-term monitoring of water quality has revolutionized the study of surface waters in recent years. However, application of these techniques to groundwater has been limited by the ability to remotely pump and analyze groundwater. This paper describes a novel autonomous groundwater quality monitoring system which samples multiple wells to evaluate temporal changes and identify trends in groundwater chemistry. The system, deployed near Fresno, California, USA, collects and transmits high-frequency data, including water temperature, specific conductance, pH, dissolved oxygen, and nitrate, from supply and monitoring wells, in real-time. The system consists of a water quality sonde and optical nitrate sensor, manifold, submersible three-phase pump, variable frequency drive, data collection platform, solar panels, and rechargeable battery bank. The manifold directs water from three wells to a single set of sensors, thereby reducing setup and operation costs associated with multi-sensor networks. Sampling multiple wells at high frequency for several years provided a means of monitoring the vertical distribution and transport of solutes in the aquifer. Initial results show short period variability of nitrate, specific conductivity, and dissolved oxygen in the shallow aquifer, while the deeper portion of the aquifer remains unchanged—observations that may be missed with traditional discrete sampling approaches. In this aquifer system, nitrate and specific conductance are increasing in the shallow aquifer, while invariant changes in deep groundwater chemistry likely reflect relatively slow groundwater flow. In contrast, systems with high groundwater velocity, such as karst aquifers, have been shown to exhibit higher-frequency groundwater chemistry changes. The stability of the deeper aquifer over the monitoring period was leveraged to develop estimates of measurement system uncertainty, which were typically lower than the manufacturer’s stated specifications, enabling the identification of subtle variability in water chemistry that may have otherwise been missed.  相似文献   

17.
Evaluation of groundwater quality represents significant input for the development and utilization of water resources. Increasing exploitation of groundwater and man-made pollution has seriously affected the groundwater quality of the North China Plain, such as in the Xuzhou region which is the target of this investigation. The assessment of the groundwater quality and sources in the region was based on analyses of water chemistry and 222Rn activity in samples collected from wells penetrating unconfined and confined aquifers. The results indicate that most of the untreated groundwater in the region is not suitable for the long-term drinking based on permissible limits of the Chinese Environmental Agency and the World Health Organization. However, the groundwater can be used as healthy source of drinking water when they can pass the biological test and softening water treatment. Most of the groundwater is suitable for irrigation. Excessive amounts of SO42? and NO3? are attributed to mainly influence of wastewater, irrigation, and dissolution of sulfate minerals in local coal strata. The major source of the groundwater is meteoric recharge with addition from irrigation and wastewater discharges. Variability of the water quality seems to be also reflecting the type of aquifers where the highest concentration of HCO3? occurs in water of the carbonate fractured aquifer, while the highest Cl? concentration in the unconfined aquifer. Source of 222Rn activity is mainly related to the rock-water interaction with possible addition from the agricultural fertilizers. Protection of groundwater is vital to maintain sustainable drinking quality through reducing infiltration of irrigation water and wastewater.  相似文献   

18.
The impact of intensive aquifer exploitation has been observed in numerous places around the world. Mexico is a representative example of this problem. In 2010, 101 out of the 653 aquifers recognized in the country, showed negative social, economic, and environmental effects related to intensive exploitation. The environmental effects include, among others, groundwater level decline, subsidence, attenuation, and drying up of springs, decreased river flow, and deterioration of water quality. This study aimed at determining the hydrochemical changes produced by intensive aquifer exploitation and highlighting water quality modifications, taking as example the Valle de Toluca, Salamanca, and San Luis Potosi aquifers in Mexico's highlands. There, elements such as fluoride, arsenic, iron, and manganese have been detected, resulting from the introduction of older groundwater with longer residence times and distinctive chemical composition (regional flows). High concentrations of other elements such as chloride, sulfate, nitrate, and vanadium, as well as pathogens, all related to anthropogenic pollution sources (wastewater infiltration, irrigation return flow, and atmospheric pollutants, among others) were also observed. Some of these elements (nitrate, fluoride, arsenic, iron, and manganese) have shown concentrations above Mexican and World Health Organization drinking water standards.  相似文献   

19.
Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.  相似文献   

20.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号