首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We studied the short- and medium-term effects of experimental nitrogen fertilization (3 and 15 months after the treatment) on the arthropods of Calluna vulgaris heathlands in NW Spain. Three heathland sites were selected with two permanent plots per site: control and fertilized. Ammonium nitrate fertilizer (56 kg N ha(-1) yr(-1)) was applied monthly and insects were caught using pitfall traps. We found mainly species-level responses to nitrogen addition. Seven species (e.g. Lochmaea suturalis) showed a consistent trend (benefited or harmed) in both periods and were proposed as possible reliable indicators of the effects of nitrogen deposition in these ecosystems. We also found variable arthropod trophic-group responses: (a) herbivores (leaf beetles, true bugs) increased in abundance on a short-term scale; (b) predators (carabid beetles, true bugs) showed opposite and less clear responses in both periods. Further long-term studies are needed to determine the mechanisms underlying the observed arthropod responses.  相似文献   

2.
Regular applications of ammonium nitrate (35-140 kg N ha(-1) year(-1)) and ammonium sulphate (140 kg N ha(-1) year(-1)) to areas of acidic and calcareous grassland in the Derbyshire Peak District over a period of 6 years, have resulted in significant losses in both overall plant cover, and the abundance of individual species, associated with clear and dose-related increases in shoot nitrogen content. No overall growth response to nitrogen treatment was seen at any stage in the experiment. Phosphorus additions to the calcareous plots did however lead to significant increases in plant cover and total biomass, indicative of phosphorus limitation in this system. Clear and dose-related increases in soil nitrogen mineralization rates were also obtained, consistent with marked effects of the nitrogen additions on soil processes. High nitrification rates were seen on the calcareous plots, and this process was associated with significant acidification of the 140 kg N ha(-1) year(-1) treatments.  相似文献   

3.
Zhang H  Cao Z  Wang G  Zhang H  Wong MH 《Chemosphere》2003,52(9):1461-1466
A winter wheat field plot experiment was conducted on two types of paddy soils, from November, 2000 to June, 2001 to assess P losses to its surrounding watercourses by runoff in the Taihu Lake Region. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 20, 80, and 160 kg P ha(-1). The experiments consisted of six replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5x6 m2 in a randomized block design. Results revealed that the average concentration of dissolved P (DP), particulate P (PP), and total P (TP) in runoff water during the winter season was 0.13, 0.90 and 1.04 mg P l(-1) respectively, from P20 plots in Anzhen site. While it was 0.67, 1.08 and 1.75 mg P l(-1) respectively, from P20 plots in Changshu site. The seasonal TP load (mass loss) from P20 plot ranged from a low of 290.88 g P ha(-1)season(-1) to a high of 483.54 g P ha(-1)season(-1), with a mean of 382.29 g P ha(-1)season(-1) in Anzhen, but from 444.92 to 752.21 g P ha(-1)season(-1), with a mean of 539.13 g P ha(-1)season(-1) in Changshu. Both in Anzhen and Changshu PP represented a major portion of the TP lost in runoff, the average PP/TP was about more than 80% in P0 and P20 plot, but it was decreased with the increase of P rate. The average seasonal P loads (DP, PP, and TP) in Changshu were greater than in Anzhen although runoff volume in Anzhen (45 mm season(-1)) was more than in Changshu (36 mm season(-1)). This was probably associated with the differences of soil physical and chemical properties between the two sites. Phosphate fertilizer rate significantly affected P concentrations and P loads by runoff. Both the mean concentrations and the average seasonal P loads from the P80 plots were lower than from the P160 plots, but obviously higher than from the P20 and P0 plots. There was no significant difference found between the P20 plots and the P0 plots both in Anzhen and Changshu sites. It indicated that P loads by runoff would be greatly increased in 5-10 years due to the accumulation of soil P if 20 kg P ha(-1) applied each wheat season in this area.  相似文献   

4.
In The Netherlands atmospheric deposition of nitrogen compounds to forest ecosystems has been very high for some decades and has led to severe nutritional imbalances in soils as well as in trees. At this moment legislation is not fully in effect with respect to lowering emission/deposition fluxes, particularly of nitrogen. The trees suffer mainly from severe magnesium, potassium and calcium and sometimes phosphorus deficiencies. In this study it was investigated whether fertilization with potassium, magnesium, calcium and phosphorus could prevent a Quercus rubra stand from further decline by restoring the nutritional balance, though the detrimental input of nitrogen compounds still continues. Three fertilization treatments were applied: (i) a standard dose of 1250 kg.ha(-1) containing 60 kg P.ha(-1) (as P2O5), 100 kg K.ha(-1) (as K2O), 80 kg Mg.ha(-1) (as MgO) and 340 kg Ca.ha(-1) (as CaCO3); (ii) two times the standard dose; and (iii) three times the standard dose. Soil solution chemistry showed that the highest dose led to the most significant results: an improved nutrient balance and an increased availability of nutrients. After one growing season following fertilization, the trees looked much healthier and crown density had increased. This revitalization lasted for at least four years. For tree health the mid dose seemed appropriate. After the first growing season potassium is the most mobile nutrient, in the soil and also in the trees, but tended to decrease in the fourth year after fertilization. Magnesium and calcium reached normal values in the leaves after four growing seasons. No obvious effects of phosphorus were found.  相似文献   

5.
Xu YC  Shen QR  Ran W 《Chemosphere》2003,50(6):739-745
Most of the N in surface soils occurs in organic forms, and when mineralized it plays a key role in soil fertility and plant nutrition. Our objective was to study the effect of long-term applications of organic manure on the content and distribution of forms of organic N in bulk soil and soil particle size fractions to characterize the inherent soil nitrogen fertility. Five treatments were as follows: (1) CK (no fertilizer and no manure added), (2) mineral fertilizer only, (3) straw + NPK, (4) green manure + NPK and (5) pig manure + NPK. Soil particle size fractions (0-2, 2-10, 10-50 and 50-100 microm) were isolated without chemical pretreatment by ultrasonic dispersion in water followed by sedimentation. The content of total N and forms of organic N in the bulk soil increased after long-term fertilization, and the effect varied with fertilizer type. The plot treated with only mineral fertilizer gave the highest NH3-N and the lowest amino sugar-N content in all treatments. The highest content of amino sugar-N and amino acid-N was found in the treatment of pig manure + NPK. The content (g kg(-1) fraction) of hydrolysable N within size fractions was in the order 0-2 > 2-10 > 50-100 > 10-50 microm, but the contribution of different size fraction to hydrolysable N decreased in the sequence 10-50 > 0-2 > 2-10 > 50-100 microm. Most of the applied mineral fertilizer N that remained in soils was distributed in the particle size fraction < 2 microm while most of the remaining N from manure applied with NPK was transferred into amino sugar-N in each size fraction, and amino acid-N in the size fractions > 2 microm during the process of humification.  相似文献   

6.
China has implemented a soil testing and fertilizer recommendation (STFR) program to reduce the over-usage of synthetic nitrogen (N) fertilizer on cereal crops since the late 1990 s. Using province scale datasets, we estimated an annual reduction rate of 2.5-5.1 kg N ha(-1) from 1998 to 2008 and improving grain yields, which were attributed to the balanced application of phosphate and potassium fertilization. Relative to the means for 1998-2000, the synthetic N fertilizer input and the corresponding N-induced N(2)O production in cereal crops were reduced by 22 ± 0.7 Tg N and 241 ± 4 Gg N(2)O-N in 2001-2008. Further investigation suggested that the N(2)O emission related to wheat and maize cultivation could be reduced by 32-43 Gg N(2)O-N per year in China (26%-41% of the emissions in 2008) if the STFR practice is implemented universally in the future.  相似文献   

7.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

8.
Leaching rates of the herbicide dichlorprop [(+/--2-(2,4-dichlorophenoxy)propanoic acid] and nitrate were measured together in field lysimeters containing undisturbed clay and peat soils. The purpose of the study was to investigate the leaching pattern of the two solutes in structured soils under different precipitation regimes. Spring barley (Hordeum distichum L.) was sown on each monolith and fertilized with 100 kg N ha(-1). Dichlorprop was applied at a rate of 1.6 kg active ingredient (a.i.) ha(-1). Each soil type received supplemental irrigation at two levels ('average' and 'worst-case'), giving total water inputs (irrigation and precipitation) of 664 and 749 mm year(-1), respectively. The larger water input approximately doubled the nitrate loads, from, on average, 11.6 to 21.8 kg N ha(-1) year(-1) in the clay soil and from 37.6 to 65.4 kg N ha(-1) year(-1) in the peat soil. In contrast, dichlorprop leaching was reduced by more than one order of magnitude when the water input was increased, from average amounts of 3.22 to 0.26 g a.i. ha(-1) during an S-month period in the clay and from 28.9 to 2.67 g a.i. ha(-1) in the peat. This leaching pattern of dichlorprop was explained in terms of preferential flow. The dried-out topsoil of 'average' watered monoliths may have allowed water flow in cracks, thus moving some of the herbicide rapidly through the topsoil to the subsoil. Once the compound reached the subsoil, degradation rates would be reduced and the herbicide residues would be stored for later leaching. Nitrate was presumably more evenly distributed in the soil matrix; therefore, water rapidly moving through macropores would not carry significant amounts of nitrate. In contrast, leaching would occur more evenly through the soil matrix, causing larger nitrate loads in the 'worst-case' watered monoliths. These results show that wet years may constitute a worst case scenario in terms of nitrate leaching, but not pesticide leaching, if macropore flow exerts a significant influence on leaching.  相似文献   

9.
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to three CO(2) levels, in combination with two nitrogen fertilizer levels and two levels of tropospheric ozone, from sowing to ripening in open-top chambers. Three additional nitrogen fertilizer treatments were carried out at the lowest and the highest CO(2) level, respectively. Plants were harvested at growth stages 31, 65 and 93 and separated into up to eight fractions to gain information about biomass partitioning. CO(2) enrichment (263 microl litre(-1) above ambient levels) drastically increased biomass of organs serving as long-term carbohydrate pools. Peduncle weight increased by 92%, stem weight by 73% and flag leaf sheath weight by 59% at growth stage 65. Average increase in shoot biomass due to CO(2) enrichment amounted to 51% at growth stage 65 and 36% at final harvest. Average yield increase was 34%. Elevated nitrogen application was most effective on biomass of green tissues. Yield was increased by 30% when nitrogen application was increased from 150 to 270 kg N ha(-1). Significant interactions were observed between CO(2) enrichment and nitrogen application. Yield increase due to CO(2) ranged from 23% at 120 kg N to 47% at 330 kg N. Triticum aestivum cv. Minaret was not very responsive to ozone at 1.5 times ambient levels. 1000 grain weight was slightly decreased, which was compensated by an increased number of grains.  相似文献   

10.
Atmospheric deposition of sulphur and nitrogen compounds may lead to enhanced leaching of base cations, accumulation of nitrogen in organic matter, lowered pH and increased concentration of toxic aluminium in soil, which in turn may affect the vitality of forest trees. A general monitoring of forest condition has been initiated in many European countries, partly in order to reveal stresses caused by acidification. However, forest condition is also affected by many other factors. This paper examines a seven-year series of crown-condition data from Local County Monitoring Plots in Norway spruce stands in Norway. Average, time trend and lability variables were calculated for crown density and crown colour for each plot. Wet deposition of sulphate, ammonium and nitrate for each plot were estimated using data from the national air and precipitation monitoring programmes. Soil data are based on soil sampling within the plots. The analysis gave no evident support for the hypothesized negative effect on crown condition from sulphur and nitrogen deposition and related alterations in soil.  相似文献   

11.
Tobacco is able to accumulate cadmium and reduction of cadmium content can reduce health hazards to smokers. Soil pH and form of N fertilizers are among the factors affecting Cd uptake by tobacco. This hypothesis was tested in an acid soil in northern Greece by a four year field experiment. The variability of Cd uptake by tobacco was attributed to the variation of soil Cd availability as affected by soil pH. Liming with 3000 kg Ca(OH)(2) ha(-1) increased soil pH by 0.8 units and decreased extractable with DTPA soil and leaf Cd by 40% and 35%, respectively. The ammonium fertilizer caused the opposite, but weaker, effects. Liming reduced soil Cd more in the ammonium treatment than in nitrate or combined N treatments. The year of cultivation strongly affected soil and leaf Cd. Four years after tobacco cultivation, soil pH was reduced by 0.5 units, whereas soil and leaf Cd reduction was more than 60% in the limed treatments. Liming affected Cd uptake only in the first three years of cultivation.  相似文献   

12.
The objective of the present research was to evaluate effects of different strip weed control associated with nitrogen fertilizer on corn applied after planting. The experiment was set and conducted in Botucatu, S?o Paulo State, Brazil, and the hybrid planted was Dekalb 333-B. A completely randomized block design with four replications was used. Experimental plots were disposed as a factorial scheme 2 x 2 x 4, constituted by two types of weeding on row (with or without manual hoeing), two types of weeding on inter-row (with or without manual hoeing), and four nitrogen levels applied after planting (00, 60, 90, and 120 kg ha(-1)). Plots were composed by six rows with 5 m length. Nitrogen fertilizer was applied at 35 days after emergence (d.a.e). For weed community it was evaluated: weed density, dominancy, frequency, and relative importance. The main weed species were: Brachiaria plantiginea, Amaranthus retroflexus, Bidens pilosa, Cyperus rotunds, Brachiaria decumbens, Euphorbia heterofila, Oxalis latifolia, Acanthospermum hispidum, Commelina benghalensis. It was evaluated corn height at 40 and 100 d.a.e., first ear insertion height at 100 d.a.e., and final grain yield at harvesting. Plants and first ear insertion height were affected when nitrogen fertilizer was not applied. Treatments without weed control showed that weed interfered negatively with plants height. There were no correlation between weeds and nitrogen fertilizer for all parameters evaluated. Parcels without weed showed the highest ear weights and final grain production. Treatments that received nitrogen fertilizer, independently of studied arrangement, provided higher yields.  相似文献   

13.
Abstract

The spatial distribution of hexazinone and two primary metabolites were measured in forest soil for two years following the aerial application of a granular formulation, PRONONE 10G, in northern Alberta. Residues were quantified using solid‐phase extraction and capillary gas chromatography. Initial deposition rates of two hexazinone treatments averaged 2.3 ± 0.5 and 4.1 ± 0.8 kg/ha for each triplicated plots. One year after application, residues of hexazinone averaged 0.25 ± 0.09 and 0.40 ± 0.02 kg/ha in 2.3 and 4.1 kg/ha treatment, respectively, in the 0–10 cm surface soil; and were distributed vertically in soil depths of 0–10, 10–20, and 20–30 cm at ratios of 10:11:2 and 10:5:2, respectively, in 2.3 and 4.1 kg/ha treatment. Metabolites A and B amounted to 15 and 30% of hexazinone, respectively. Two years after application, the vertical movement of hexazinone in soil was quantifiable to the 40‐cm depth in both 2.3‐ and 4.1‐kg/ha treatment plots. Trace amounts of hexazinone were detected at 130 cm only in the 2.3‐kg/ha plot, which is likely due to the more freely downward movement of hexazinone to deeper horizons along decayed root channels.  相似文献   

14.
上海郊区稻田氮素流失研究   总被引:15,自引:0,他引:15  
通过测坑和大田小区试验,研究了上海郊区稻田氮素排水流失和渗漏流失的特征、相关因素和流失负荷。结果表明,稻田综合排水TN为6.55mg/L,流失负荷为16.68kg/hm^2,以铵态氮为主,稻田氮素的排水流失负荷为16.68kg/hm^2。稻田渗漏水氮浓度与前茬作物有关,草莓和蔬菜高,麦茬低,TN为5.73mg/L,渗漏负荷为22.92kg/hm^2,其中硝态氮占50%左右。稻田氮素总流失负荷占稻季化肥用量的13.23%。测坑和大田试验都证明,施用有机肥可较多地减少稻田氮素流失量。  相似文献   

15.
An input-output budget for dissolved inorganic-N in a small forested catchment in North Wales is presented. From 1982 to 1990, bulk precipitation inputs averaged 10.3 kg ha(-1) year(-1), whereas throughfall inputs in 1983-1984 were 20.3 kg ha(-1) year(-1). Streamwater outputs were consistently larger than bulk precipitation inputs, averaging 14.6 kg ha(-1) year(-1). Inorganic-N in the forest stream was predominantly nitrate and concentrations were substantially higher than in a nearby moorland stream. Both streams showed seasonal trends in nitrate concentration, with highest concentrations occurring in summer in the forest stream but in winter in the moorland stream. Nitrate concentration in the forest stream increased with increasing soil temperature up to approximately 7 degrees C and decreased at higher temperatures. Nitrification is thought to be responsible for nitrate production at temperatures both below and above 7 degrees C, but root uptake becomes significant only at the higher temperatures. In the forest, dry deposition and cloudwater inputs of inorganic-N are responsible for increased nitrogen fluxes in throughfall compared with wet deposition. Mineralization and nitrification in excess of plant needs causes the organic soil horizons to act as a net source of dissolved inorganic-N. Nitrogen transformations in the soil lead to soil acidification at a rate of 1.0 keq ha(-1) year(-1).  相似文献   

16.
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.  相似文献   

17.
The nitrifying activity and the effect of fertilization with urea and methylene urea were studied in a landfarming site. The site has been operative over 20 years and maintained by heavy nitrogen fertilization. The landfarming soil contained 4-6% (w/w) oil. The nitrate accumulation was 20-50mg NO3-N day(-1)kg(-1) observed after methylene urea fertilization of 889 g Nm(-2). Nitrification ex situ (in laboratory conditions) was 8.8 mg NO3-N day(-1) kg(-1) in the presence of 380 mg kg(-1) NH4+-N. The half-saturation concentration of nitrification was more than 200 mg NH4+-N kg(-1). The results show that nitrification was active in soil with high oil concentration. Urea fertilization of 893 g Nm(-2) caused an increase of soil NH4+-N concentration up to 5500 mg kg(-1) and pH>8.5. This led to inhibition of nitrification, which persisted after NH4+ concentration decreased below 200mg NH4+ kg(-1).  相似文献   

18.
This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.  相似文献   

19.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

20.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha(- 1). Terbuthylazine was applied to both plots at a rate of 2 kg ha(- 1) a.i. Triplicates from each plot were sampled at 3 depths (0-10, 10-20 and 20-30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号