首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Identifying crash propensity using specific traffic speed conditions   总被引:2,自引:0,他引:2  
INTRODUCTION: In spite of recent advances in traffic surveillance technology and ever-growing concern over traffic safety, there have been very few research efforts establishing links between real-time traffic flow parameters and crash occurrence. This study aims at identifying patterns in the freeway loop detector data that potentially precede traffic crashes. METHOD: The proposed solution essentially involves classification of traffic speed patterns emerging from the loop detector data. Historical crash and loop detector data from the Interstate-4 corridor in the Orlando metropolitan area were used for this study. Traffic speed data from sensors embedded in the pavement (i.e., loop detector stations) to measure characteristics of the traffic flow were collected for both crash and non-crash conditions. Bayesian classifier based methodology, probabilistic neural network (PNN), was then used to classify these data as belonging to either crashes or non-crashes. PNN is a neural network implementation of well-known Bayesian-Parzen classifier. With its superb mathematical credentials, the PNN trains much faster than multilayer feed forward networks. The inputs to final classification model, selected from various candidate models, were logarithms of the coefficient of variation in speed obtained from three stations, namely, station of the crash (i.e., station nearest to the crash location) and two stations immediately preceding it in the upstream direction (measured in 5 minute time slices of 10-15 minutes prior to the crash time). RESULTS: The results showed that at least 70% of the crashes on the evaluation dataset could be identified using the classifiers developed in this paper.  相似文献   

2.

Introduction

This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials.

Method

The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times.

Conclusions

From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes.

Impact on Industry

The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths.  相似文献   

3.
Introduction: Reducing the likelihood of freeway secondary crashes will provide significant safety, operational and environmental benefits. This paper presents a method for assessing the likelihood of freeway secondary crashes with Adaptive Signal Control Systems (ASCS) deployed on alternate routes that are typically used by diverted freeway traffic to avoid any delay or congestion due to a freeway primary crash. Method: The method includes four steps: (1) identification of secondary crashes, (2) verification of alternate routes, (3) assessment of the likelihood of secondary crashes for freeways with ASCS deployed on alternate routes and non-ASCS (i.e. pre-timed, semi- or fully-actuated) alternate routes, and (4) investigation of unobserved heterogeneity of the likelihood of freeway secondary crashes. Four freeway sections (i.e., two with ASCS deployed on alternate routes and two non-ASCS alternate routes) in South Carolina are considered. Results and Conclusions: Findings from the logistic regression modeling reveal significant reduction in the likelihood of secondary crashes for one freeway section (i.e., Charleston I-26 E) with ASCS deployed on alternate route. Other factors such as rear-end crash, dark or limited light, peak period, and annual average daily traffic contribute to the likelihood of freeway secondary crashes. Furthermore, random-parameter logistic regression model results for Charleston I-26 E reveal that unobserved heterogeneity of ASCS effect exists across the observations and ASCS are associated with the reduction of the likelihood of freeway secondary crashes for 84% of the observations (i.e., primary crashes). Location of the primary crash on the freeway is observed to affect the benefit of ASCS toward freeway secondary crash reduction as the primary crash’s location determines how many upstream freeway vehicles will be able to take the alternate route. Practical Applications: Based on the findings, it is recommended that the South Carolina Department of Transportation (SCDOT) considers deploying ASCS on alternate routes parallel to freeway sections where high percentages of secondary crashes are found.  相似文献   

4.
Introduction: The main objective of this research is to investigate the effect of traffic barrier geometric characteristics on crashes that occurred on non-interstate roads. Method: For this purpose, height, side-slope rate, post-spacing, and lateral offset of about 137 miles of traffic barriers were collected on non-interstate (state, federal aid primary, federal aid secondary, and federal aid urban) highways in Wyoming. In addition, crash reports recorded between 2008 and 2017 were added to the traffic barrier dataset. The safety performance of traffic barriers with regards to their geometric features was analyzed in terms of crash frequency and crash severity using random-parameters negative binomial, and random-parameters ordered logit models, respectively. Results: From the results, box beam barriers with a height of 27–29 inches were less likely to be associated with injury and fatal injury crashes compared to other barrier types. On the other hand, the likelihood of a severe injury crash was found to be higher for box beam barriers with a height taller than 31 inches. Both W-beam and box beam barriers with a post-spacing between 6.1 and 6.3 inches reduced the probability of severe injury crashes. In terms of the crash frequency, flare traffic barriers had a lower crash frequency compared to parallel traffic barriers. Non-interstate roads without longitudinal rumble strips were associated with a higher rate of traffic barrier crashes.  相似文献   

5.
Introduction: Road safety studies in signalized intersections have been performed extensively using annually aggregated traffic variables and crash frequencies. However, this type of aggregation reduces the strength of the results if variables that oscillate over the course of the day are considered (speed, traffic flow, signal cycle length) because average indicators are not able to describe the traffic conditions preceding the crash occurrence. This study aims to explore the relationship between traffic conditions aggregated in 15-min intervals and road crashes in urban signalized intersections. Method: First, an investigation of the reported crash times in the database was conducted to obtain the association between crashes and their precursor conditions. Then, 4.1 M traffic condition intervals were consolidated and grouped using a hierarchical clustering technique. Finally, charts of the frequency of crashes per cluster were explored. Results: The main findings suggest that high vehicular demand conditions are related to an increase in property damage only (PDO) crashes, and an increase in the number of lanes is linked to more PDO and injury crashes. Injury crashes occurred in a wide range of traffic conditions, indicating that a portion of these crashes were due to speeding, while the other fraction was associated with the vulnerability of road users. Traffic conditions with: (a) low vehicular demand and a long cycle length and (b) high vehicular demand and a short cycle length were critical in terms of PDO and injury crashes. Practical Applications: The use of disaggregated data allowed for a stronger evaluation of the relationship between road crashes and variables that oscillate over the course of the day. This approach also permits the development of real-time risk management strategies to mitigate the frequency of critical traffic conditions and reduce the likelihood of crashes.  相似文献   

6.
7.
Introduction: Alcohol-related impairment is a key contributing factor in traffic crashes. However, only a few studies have focused on pedestrian impairment as a crash characteristic. In Louisiana, pedestrian fatalities have been increasing. From 2010 to 2016, the number of pedestrian fatalities increased by 62%. A total of 128 pedestrians were killed in traffic crashes in 2016, and 34.4% of those fatalities involved pedestrians under the influence (PUI) of drugs or alcohol. Furthermore, alcohol-PUI fatalities have increased by 120% from 2010 to 2016. There is a vital need to examine the key contributing attributes that are associated with a high number of PUI crashes. Method: In this study, the research team analyzed Louisiana’s traffic crash data from 2010 to 2016 by applying correspondence regression analysis to identify the key contributing attributes and association patterns based on PUI involved injury levels. Results: The findings identified five risk clusters: intersection crashes at business/industrial locations, mid-block crashes on undivided roadways at residential and business/residential locations, segment related crashes associated with a pedestrian standing in the road, open country crashes with no lighting at night, and pedestrian violation related crashes on divided roadways. The association maps identified several critical attributes that are more associated with fatal and severe PUI crashes. These attributes are dark to no lighting, open country roadways, and non-intersection locations. Practical Applications: The findings of this study may be used to help design effective mitigation strategies to reduce PUI crashes.  相似文献   

8.
Introduction: Traffic crashes could result in severe outcomes such as injuries and deaths. Thus, understanding factors associated with crash severity is of practical importance. Few studies have deeply examined how prior violation and crash experience of drivers and roadways are associated with crash severity. Method: In this study, a set of risk indicators of road users and roadways were developed based on their prior violation and crash records (e.g., cumulative crash frequency of a roadway), in order to reflect certain aspect or degree of their driving risk. To explore the impacts of those indicators on crash severity and complex interactions among all contributing factors, a Bayesian network approach was developed, based on citywide crash data collected in Kunshan, China from 2016 to 2018. A variable selection procedure based on Information Value (IV) was developed to identify significant variables, and the Bayesian network was employed to explicitly explore statistical associations between crash severity and significant variables. Results: In terms of balanced accuracy and AUCs, the proposed approach performed reasonably well. Bayesian modeling results indicated that the prior crash/violation experiences of road users and roadways were very important risk indicators. For example, migrant workers tend to have high injury risk due to their dangerous violation behaviors, such as retrograding, red-light running, and right-of-way violation. Furthermore, results showed that certain variable combinations had enhanced impacts on severity outcome than single variables. For example, when a migrant worker and a non-motorized vehicle are involved in a crash happening on a local road with high cumulative violation frequency in the previous year, the probability for drivers suffering serious injury or fatality is much higher than that caused by any single factor. Practical applications: The proposed methodology and modeling results provide insights for developing effective countermeasures to reduce crash severity and improve traffic system safety performance.  相似文献   

9.
IntroductionDespite the numerous safety studies done on traffic barriers’ performance assessment, the effect of variables such as traffic barrier’s height has not been identified considering a comprehensive actual crash data analysis. This study seeks to identify the impact of geometric variables (i.e., height, post-spacing, sideslope ratio, and lateral offset) on median traffic barriers’ performance in crashes on interstate roads.MethodGeometric dimensions of over 110 miles median traffic barriers on interstate Wyoming roads were inventoried in a field survey between 2016 and 2018. Then, the traffic barrier data collected was combined with historical crash records, traffic volume data, road geometric characteristics, and weather condition data to provide a comprehensive dataset for the analysis. Finally, an ordered logit model with random-parameters was developed for the severity of traffic barrier crashes. Based on the results, traffic barrier’s height was found to impact crash severity.ResultsCrashes involving cable barriers with a height between 30″ and 42″ were less severe than other traffic barrier types, while concrete barriers with a height shorter than 32″ were more likely involved with severe injury crashes. As another important finding, the post-spacing of 6.1–6.3 ft. was identified as the least severe range in W-beam barriers.Practical applicationsThe results show that using flare barriers should reduce the number of crashes compared to parallel barriers.  相似文献   

10.

Introduction

The study aims at identifying traffic/highway design/driver-vehicle information significantly related with fatal/severe crashes on urban arterials for different crash types. Since the data used in this study are observational (i.e., collected outside the purview of a designed experiment), an information discovery approach is adopted for this study.

Method

Random Forests, which are ensembles of individual trees grown by CART (Classification and Regression Tree) algorithm, are applied in numerous applications for this purpose. Specifically, conditional inference forests have been implemented. In each tree of the conditional inference forest, splits are based on how good the association is. Chi-square test statistics are used to measure the association. Apart from identifying the variables that improve classification accuracy, the methodology also clearly identifies the variables that are neutral to accuracy, and also those that decrease it.

Results

The methodology is quite insightful in identifying the variables of interest in the database (e.g., alcohol/ drug use and higher posted speed limits contribute to severe crashes). Failure to use safety equipment by all passengers and presence of driver/passenger in the vulnerable age group (more than 55 years or less than 3 years) increased the severity of injuries given a crash had occurred. A new variable, ‘element’ has been used in this study, which assigns crashes to segments, intersections, or access points based on the information from site location, traffic control, and presence of signals.

Impact

The authors were able to identify roadway locations where severe crashes tend to occur. For example, segments and access points were found to be riskier for single vehicle crashes. Higher skid resistance and k-factor also contributed toward increased severity of injuries in crashes.  相似文献   

11.
IntroductionThis study provides a systematic approach to investigate the different characteristics of weekday and weekend crashes.MethodWeekend crashes were defined as crashes occurring between Friday 9 p.m. and Sunday 9 p.m., while the other crashes were labeled as weekday crashes. In order to reveal the various features for weekday and weekend crashes, multi-level traffic safety analyses have been conducted. For the aggregate analysis, crash frequency models have been developed through Bayesian inference technique; correlation effects of weekday and weekend crash frequencies have been accounted. A multivariate Poisson model and correlated random effects Poisson model were estimated; model goodness-of-fits have been compared through DIC values. In addition to the safety performance functions, a disaggregate crash time propensity model was calibrated with Bayesian logistic regression model. Moreover, in order to account for the cross-section unobserved heterogeneity, random effects Bayesian logistic regression model was employed.ResultsIt was concluded that weekday crashes are more probable to happen during congested sections, while the weekend crashes mostly occur under free flow conditions. Finally, for the purpose of confirming the aforementioned conclusions, real-time crash prediction models have been developed. Random effects Bayesian logistic regression models incorporating the microscopic traffic data were developed. Results of the real-time crash prediction models are consistent with the crash time propensity analysis. Furthermore, results from these models would shed some lights on future geometric improvements and traffic management strategies to improve traffic safety.Impact on IndustryUtilizing safety performance to identify potential geometric improvements to reduce crash occurrence and monitoring real-time crash risks to pro-actively improve traffic safety.  相似文献   

12.
IntroductionRoadway departure (RwD) crashes, comprising run-off-road (ROR) and cross-median/centerline head-on collisions, are one of the most lethal crash types. According to the FHWA, between 2015 and 2017, an average of 52 percent of motor vehicle traffic fatalities occurred each year due to roadway departure crashes. An avoidance maneuver, inattention or fatigue, or traveling too fast with respect to weather or geometric road conditions are among the most common reasons a driver leaves the travel lane. Roadway and roadside geometric design features such as clear zones play a significant role in whether human error results in a crash. Method: In this paper, we used mixed-logit models to investigate the contributing factors on injury severity of single-vehicle ROR crashes. To that end, we obtained five years' (2010–2014) of crash data related to roadway departures (i.e., overturn and fixed-object crashes) from the Federal Highway Administration's Highway Safety Information System Database. Results: The results indicate that factors such as driver conditions (e.g., age), environmental conditions (e.g., weather conditions), roadway geometric design features (e.g., shoulder width), and vehicle conditions significantly contributed to the severity of ROR crashes. Conclusions: Our results provide valuable information for traffic design and management agencies to improve roadside design policies and implementing appropriately forgiving roadsides for errant vehicles. Practical applications: Our results show that increasing shoulder width and keeping fences at the road can reduce ROR crash severity significantly. Also, increasing road friction by innovative materials and raising awareness campaigns for careful driving at daylight can decrease the ROR crash severity.  相似文献   

13.
14.
Introduction: Highway-rail at-grade crossings (HRGCs) are critical locations where a railway and a roadway intersect with one another. Crashes at those locations often result in fatalities and economic and social damages due to the impacts on both road and rail users. The main purpose of countermeasures at HRGCs is to permit safe and efficient rail and highway operations. Method: Countermeasures at highway-rail grade crossings (HRGCs) considered in this study include all traffic control devices and other warning and barrier devices at or on approaches to crossings. In general, active devices are commonly accepted as more effective countermeasures than passive devices. However, many of the previous effectiveness studies are either at the project level or were conducted without considering the before-improvement condition. This study focuses on the network-level marginal effectiveness of countermeasures on crash rate and severity levels during the 29-year study period from 1990 to 2018 by fully considering before-improvement control levels. A competing risk model (CRM) is able to accommodate the competing nature of crash severities as multiple outcomes from the same event of interest, which is crash occurrence in this study. Subsequently, CRM is used in this study as an integrated one-step estimation approach that investigates both crash frequency and severity likelihood over time. Results: The study findings indicate that adding audible devices to crossings already equipped with gates will result in a considerable annual decline in crash occurrence likelihood (0.25%). The same device installed at crossings already controlled by gates and flashing lights results in less reduction in crash occurrence likelihood of 0.14%. Moreover, adding a stop sign to the active crossing controls of gates, standard flashing lights, and audible devices will lead to a decrease in the probability of crash occurrence and severe crashes (injury and fatal). However, adding stop signs to crossings equipped only with crossbucks will increase the crash occurrence.  相似文献   

15.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

16.
IntroductionA pedestrian crash occurs due to a series of contributing factors taking effect in an antecedent-consequent order. One specific type of antecedent-consequent order is called a crash causation pattern. Understanding crash causation patterns is important for clarifying the complicated growth of a pedestrian crash, which ultimately helps recommend corresponding countermeasures. However, previous studies lack an in-depth investigation of pedestrian crash cases, and are insufficient to propose a representative picture of causation patterns. Method: In this study, pedestrian crash causation patterns were discerned by using the Driving Reliability and Error Analysis Method (DREAM). One hundred and forty-two pedestrian crashes were investigated, and five pedestrian pre-crash scenarios were extracted. Then, the crash causation patterns in each pre-crash scenario were analyzed; and finally, six distinct patterns were identified. Accordingly, 17 typical situations corresponding to these causation patterns were specified as well. Results: Among these patterns, the pattern related to distracted driving and the pattern related to an unexpected change of pedestrian trajectory contributed to a large portion of the total crashes (i.e., 27% and 24%, respectively). Other patterns also played an important role in inducing a pedestrian crash; these patterns include the pattern related to an obstructed line of sight caused by outside objects (9%), the pattern that involves reduced visibility (13%), and the pattern related to an improper estimation of the gap distance between the vehicle and the pedestrian (10%). The results further demonstrated the inter-heterogeneity of a crash causation pattern, as well as the intra-heterogeneity of pattern features between different pedestrian pre-crash scenarios. Conclusions and practical applications: Essentially, a crash causation pattern might involve different contributing factors by nature or dependent on specific scenarios. Finally, this study proposed suggestions for roadway facility design, roadway safety education and pedestrian crash prevention system development.  相似文献   

17.
IntroductionThis study explored how drivers adapt to inclement weather in terms of driving speed, situational awareness, and visibility as road surface conditions change from dry to slippery and visibility decreases. The proposed work mined existing data from the SHRP 2 NDS for drivers who were involved in weather-related crash and near-crash events. Baseline events were also mined to create related metadata necessary for behavioral comparisons. Methods: Researchers attempted, to the greatest extent possible, to match non-adverse-weather driving scenarios that are similar to the crash and near-crash event for each driver. The ideal match scenario would be at a day prior to the crash during non-adverse weather conditions having the same driver, at the same time of day, with the same traffic level on the same road on which the crash or near-crash occurred. Once the matched scenarios have been identified, a detailed analysis will be performed to determine how a driver’s behavior changed from normal driving to inclement-weather driving. Results: Data collected indicated that, irrespective of site location (i.e., state), most crashes and near-crashes occurred in rain, with only about 12% occurring in snowy conditions. Also, the number of near-crashes was almost double the number of crashes showing that many drivers were able to avoid a crash by executing an evasive maneuver such as braking or steering. Conclusions: Most types of near crashes were rear-end and sideswipe avoidance epochs, as the drivers may have had a difficult time merging or trying to change lanes due to low visibility or traffic. Hard braking combined with swerving were the most commonly used evasive maneuvers, occurring when drivers did not adjust their speeds accordingly for specific situations. Practical applications: Results from this study are expected to be utilized to educate and guide drivers toward more confident and strategic driving behavior in adverse weather.  相似文献   

18.

Problem

Traffic crashes are a major cause of injury and death. Although it has been argued that a skewed estimation of personal risks may be partly attributable to news representations of mortality causes, the manners in which traffic crashes are covered in the news have not received much attention in the literature.

Method

The current study used content analysis to examine the framing of traffic crashes in television news.

Results

The data indicated that Flemish television news does not report traffic crashes from a public health perspective and consequently it misses opportunities to inform the public on the causes and consequences of risk-taking in traffic.

Impact on industry

It is important that professionals are aware of these findings and stress contextual factors surrounding traffic crashes in their communication with journalists. This may lead to more accurate reports and a more accurate risk perception of viewers.  相似文献   

19.
OBJECTIVE: Various factors influence the time performance of emergency management personnel when a freeway traffic crash occurs. The proper identification and prioritization of factors that contribute to emergency management services' response times and clearance times result in better usage of taxpayer resources. METHOD: Use of a proportional hazard-based Cox-regression model analyzed statewide, peak-period, traffic crash data from 1999 Ohio logs. These data included time performance measures of emergency management services. RESULTS: Traffic crash severity had the most effect on response times. Those crashes involving injuries or fatalities had up to 20% less emergency management service response times than "property damage only" crashes. Environmental factors such as weather or roadway conditions had minimal effect on response times to traffic crashes. Day of week, urban or rural area, off or opposing-lane crash location, number of vehicles involved, heavy vehicle involvement, and response time significantly affected clearance time and the resulting total time during peak periods. CONCLUSIONS: By assessing resources currently dedicated to insignificant factors, emergency management services can further improve response times to those casualties that crucially need emergency services. By accurately identifying and deciphering traffic crash severity from initial field reports, services can further improve. Moreover, improvements in crash severity prediction reduce "false alarms" for emergency services. The improvements reduce the probability of a very short response time for a property damage only crash in which initial reports implied a very severe injury. By focusing on factors that significantly reduce traffic crash clearance times on freeways in peak periods, more reductions in average delay experienced by freeway users, in fuel consumption, and in motor vehicle emissions can occur.  相似文献   

20.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号