首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
文章在北京城市森林植被区选择2个观测点,采集2个观测点的PM_(2.5)质量浓度数据,并结合北京植物园的气象数据,研究其PM_(2.5)质量浓度变化特征和影响因素,探讨PM_(2.5)质量浓度变化对城市生活的影响。结果表明:被选观测点的PM_(2.5)浓度月变化基本呈"M"型,PM_(2.5)浓度在6月最低(西山公园为(71.01±34.34)μg/m~3,北京植物园为(44.41±31.57)μg/m~3),2月最高(西山公园为(154.07±95.70)μg/m~3,北京植物园为(139.49±100.74)μg/m~3),10月达下半年的最高值(西山公园为(133.45±109.06)μg/m~3,北京植物园为(127.04±109.34)μg/m~3);PM_(2.5)浓度全年均值为西山公园((104.02±26.45)μg/m~3)>北京植物园((82.52±28.18)μg/m~3);PM_(2.5)浓度季节变化呈"V"型在冬季最高,春季次之,夏季最低PM_(2.5)质量浓度季节变化西山公园为冬季((115.46±41.37)μg/m~3)>春季((112.39±18.50)μg/m~3)>秋季((106.37±24.25)μg/m~3)>夏季((81.87±12.60)μg/m~3),北京植物园为冬季((97.35±41.38)μg/m~3)>春季((94.07±12.21)μg/m~3)>秋季((93.17±31.42)μg/m~3)>夏季((61.86±16.70)μg/m~3);森林空旷地的空气质量优于森林内部PM_(2.5)浓度变化主要受地理位置、气象因素、人文因素的影响。  相似文献   

2.
不同空气质量等级下环境空气颗粒物及其碳组分变化特征   总被引:2,自引:2,他引:0  
为研究不同空气质量等级下环境空气颗粒物及其碳组分变化特征,于2016年3月在廊坊市对环境空气中PM_(10)、PM_(2.5)和PM1质量浓度及PM_(2.5)中碳组分质量浓度进行了在线监测.结果表明,监测期间廊坊市PM_(10)、PM_(2.5)和PM1质量浓度较高,其分别为204.1、107.9和87.8μg·m~(-3),日变化趋势呈双峰型分布.总体来说,当空气质量越好,PM_(10)、PM_(2.5)、PM1及其碳组分(OC、EC、SOC和POC)质量浓度越低,PM1/PM_(2.5)、PM1/PM_(10)和PM_(2.5)/PM_(10)比值越小.但"中度污染"时,PM_(10)质量浓度最高,且PM1/PM_(10)和PM_(2.5)/PM_(10)达到谷底值;同时OC质量浓度比"轻度污染"略低,而明显低于"重度污染",且主要出现在13:00~23:00,表明"中度污染"时细颗粒物和超细颗粒物占比下降,与其对应的首要污染物相一致.此外,OC/EC比值大于2.0,通过最小OC/EC比值法估算PM_(2.5)中SOC和POC,其浓度均值分别为12.2μg·m~(-3)和5.0μg·m~(-3).  相似文献   

3.
我国PM2.5浓度分阶段改善目标情景分析   总被引:2,自引:0,他引:2  
贺晋瑜  燕丽  王彦超  雷宇  汪旭颖 《环境科学》2019,40(5):2036-2042
分析了部分发达国家、地区PM_(2. 5)改善经验和我国74个重点城市2013~2016年PM_(2. 5)年均浓度的改善情况,得出不同浓度区间城市所能达到的PM_(2. 5)年均浓度降幅,并据此设计了我国城市PM_(2. 5)浓度改善情景,通过自下而上的计算方法,测算了全国城市、31个省(区、市)及重点区域的PM_(2. 5)浓度分阶段改善目标.结果表明,在2种情景下我国PM_(2. 5)年均浓度均将在2025年前实现达标,在2030年下降到30μg·m~(-3)以下;京津冀及周边地区在2030年实现达标;长三角地区在2025年达标,2030年区域内城市实现全面达标.北京、天津、河北、河南等省(市)基准年PM_(2. 5)年均浓度高,在2030年实现达标的压力较大;在重点区域强化情景下,京津冀及周边地区2030年仍有接近40%的城市PM_(2. 5)浓度超标,应持续加大重污染地区PM_(2. 5)污染防治工作的力度,以推进PM_(2. 5)浓度目标的实现.  相似文献   

4.
为了研究G20峰会期间杭州市及其周边地区大气质量状况,评估保障措施的实施对空气质量的影响,利用2016年8月24日-2016年9月6日杭州及其周边城市空气质量监测数据,分析其时空分布特征,并与2015年同期数据进行比较.结果显示:(1)2016年8月24日-9月6日即会期保障阶段,杭州市PM_(2.5),PM_(10),SO_2,NO_2,CO和O_3浓度均值为31.52μg/m~3,46.55μg/m~3,8.92μg/m~3,15.22μg/m~3,0.62mg/m~3和113.98μg/m~3.(2)与2015年同期相比,会议保障阶段杭州市PM_(2.5),PM_(10),SO_2,NO_2和CO浓度分别下降了40.16%,37.71%,25.98%,56.30%和30.34%,O_3浓度则上升了19.89%.(3)2016年会期保障阶段,2015年同期和G20峰会举办期间的3个时段,污染物日变化特征相似,除O_3外,其他污染物整体上呈现2015年同期2016年会期保障阶段G20峰会举办期间的特点.(4)空间上而言,会期保障阶段O_3浓度在空间上表现出显著上升,其他污染物浓度同比有明显下降,其中PM_(2.5)和PM_(10)在空间上的差异较小,而SO_2和NO_2在空间上的差异较大.(5)G20峰会期间采取的保障措施确保了杭州市及其周边地区大气质量得到了改善.  相似文献   

5.
应用中尺度天气-化学预报模式(WRF-Chem),基于重点源(八大重点行业与交通)一般与强化两组减排情景,针对2013年开展长三角地区重点源减排对PM_(2.5)浓度影响的模拟研究.长三角地区SO2、NOx、PM_(2.5)和NMVOC排放在一般减排情景下分别减少36.3%、26.3%、32.0%、14.6%,强化减排情景下分别减少51.4%、39.6%、37.6%、28.4%.模拟结果表明,两组减排情景下长三角地区国控点PM_(2.5)年均浓度分别下降1.4~26.7μg·m~(-3)和2.1~32.3μg·m~(-3),降幅分别为2.7%~23.1%和3.9%~27.5%,二次无机盐中硝酸盐对年均PM_(2.5)浓度的降低贡献最大.PM_(2.5)及二次无机盐浓度变化的季节特征均体现为冬季降幅最小,夏季降幅最大,并且随着减排力度的增强,夏季降幅的进一步降低程度最显著,导致削减效果的季节差异增大.重点源强化减排即可使得上海、江苏夏季PM_(2.5)浓度降低约20%.对大气氧化性的进一步分析表明,减排对四季大气氧化性均有不同程度的增强,加大减排力度后,大气氧化性进一步增强,有利于二次PM_(2.5)的生成,从而阻碍了PM_(2.5)浓度的降低.其中,冬季的阻碍作用最强,导致PM_(2.5)污染改善效果最差.夏季大气氧化性受减排影响较小,从而使得PM_(2.5)污染改善在四季中最有效.此外,春、秋季的阻碍作用也不容忽视.  相似文献   

6.
利用1998~2012年卫星反演的细颗粒物(PM_(2.5))全球高精度产品数据集,精细化地给出了华东地区PM_(2.5)时空分布与变化特征,并分析了此背景下浙江省PM_(2.5)的人口经济暴露水平.结果表明1998~2012年期间,浙江省区域平均PM_(2.5)浓度整体变化呈现出先增加、后下降的特征,拐点出现在2007~2009年前后,与华东区域大背景的变化趋势一致.1998~2000年华东南部与山东东部的年平均PM_(2.5)浓度基本保持在50μg·m~(-3)以下,其余地区大多在50~75μg·m~(-3)左右,华东地区和浙江省PM_(2.5)浓度超过35μg·m~(-3)的地区分别占到51.8%和21.1%.1998~2009年PM_(2.5)浓度上升趋势非常明显,华东地区的平均变化趋势为2.58μg·(m~3·a)~(-1),浙江省的上升趋势较华东区域慢,为1.43μg·(m~3·a)~(-1).2007~2009年PM_(2.5)浓度达到最大,华东和浙江省超过35μg·m~(-3)的地区分别占到82.1%和65.9%.此后PM_(2.5)浓度呈现出下降的变化趋势,华东地区和浙江省的平均变化趋势分别为-1.75μg·(m~3·a)~(-1)和-1.58μg·(m~3·a)~(-1),PM_(2.5)浓度超过35μg·m~(-3)的地区比例均有所下降,说明政府颁布的一系列节能减排方针政策可能对华东地区的空气质量改善起到了一定的成效.2010年浙江地区PM_(2.5)暴露水平超过35μg·m~(-3)的人口比例和GDP比例分别为74.0%和70.8%,其中38.1%的人口生活的环境和38.9%的GDP产生的环境PM_(2.5)浓度年平均值在50μg·m~(-3)以上.  相似文献   

7.
根据政府间气候变化专门委员会第五次评估报告(IPCCAR5)给出的气溶胶及其前体物的不同排放情景RCP2.6(低排放)、RCP4.5(中等排放)和RCP8.5(高排放),利用国家气候中心的气溶胶-气候在线耦合模式,分别模拟了2010~2030和2030~2050年总PM_(2.5)(人为和自然PM_(2.5)的总和)及其中人为和自然气溶胶柱含量的时空变化,并预估了的绿色排放情景RCP4.5下中国地区人为和自然气溶胶对总PM_(2.5)浓度变化的贡献.结果表明,在3种排放情景下,2010~2030年PM_(2.5)柱含量变化的空间分布基本相似.在欧洲、北非及其西侧的洋面上,PM_(2.5)呈现不同程度的增加,其中以北非及其西侧的洋面上的增加最为明显,而阿拉伯半岛东部PM_(2.5)则明显减少.在RCP4.5排放情景下,中国地区年均PM_(2.5)地表浓度的减少量约为2.55μg/m~3,其中人为气溶胶的贡献约为28%,自然气溶胶的贡献约为72%.2030~2050年,3种排放情景下PM_(2.5)柱含量变化的空间分布差异较大,在RCP4.5和RCP8.5放情景下,非洲北部及其西侧洋面的PM_(2.5)显著增加,而东亚地区的PM_(2.5)显著减少,而RCP2.6排放情景与前2种情景的结果区别很大.在RCP4.5排放情景下,中国地区PM_(2.5)及其中人为和自然气溶胶均在2010~2030年的基础上进一步减少,而且人为气溶胶在其中的贡献(约为34%)也有所增加.  相似文献   

8.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

9.
选取北京和石家庄两个监测点,于2014年冬季进行了PM_(2.5)样品采集,分析研究了PM_(2.5)及水溶性离子组分污染特征,并应用WRF-CAMx模型对采样时段进行了模拟,分析了观测期间PM_(2.5)和二次离子组分区域传输贡献情况.结果表明,采样期间北京PM_(2.5)质量浓度为(116.6±87.0)μg/m~3.水溶性离子质量浓度为(45.3±40.6)μg/m~3.其中SO_4~(2-)、NO_3~-和NH4+质量浓度分别为(13.3±13.6)μg/m~3、(14.8±15.1)μg/m~3和(9.1±7.2)μg/m~3;石家庄污染水平高于北京,PM_(2.5)浓度为(267.7±166.7)μg/m~3.总水溶性离子、SO_4~(2-)、NO_3~-和NH4+质量浓度分别(111.8±104.3)μg/m~3、(36.6±36.5)μg/m~3、(28.5±29.3)μg/m~3和(25.5±29.8)μg/m~3.两处采样点SOR与NOR分别为0.12、0.10(北京)和0.11、0.14(石家庄),冬季大气氧化性相对较弱,非均相氧化是主要二次转化原理.数值模拟结果显示,北京、石家庄城区1月PM_(2.5)受区域传输贡献分别为28.1%和28.3%,高浓度时段外来源贡献有所上升.二次离子中两地NO_3~-传输作用均强于SO_4~(2-).  相似文献   

10.
重庆市主城区PM2.5时空分布特征   总被引:6,自引:3,他引:3  
利用2014年6月1日至2015年5月31日重庆市主城区17个国控空气质量监测站24 h自动连续采样的PM_(2.5)浓度数据,探讨了重庆市主城区PM_(2.5)时空分布特征.结果表明:1重庆市主城区PM_(2.5)季节浓度由高到低依次为冬季(100.2μg·m~(-3))、秋季(66.1μg·m~(-3))、春季(45.9μg·m~(-3))和夏季(33.4μg·m~(-3))(P0.05).2重庆市主城区PM_(2.5)月均浓度变化呈单峰单谷型,1月PM_(2.5)月均浓度最高(P0.05),达到120.8μg·m-3.3逐日变化,国控17个空气质量监测站PM_(2.5)日均浓度曲线都呈现出尖峰和深谷交替变化的锯齿状.4重庆市主城区16个国控监测点(除缙云山对照点)PM_(2.5)浓度日变化在全年、春季、秋季和冬季都呈现明显的双峰双谷型.5PM_(2.5)与SO_2、NO_2和CO都呈显著正相关(P0.01),表明SO_2、NO_2和CO的二次转化对PM_(2.5)浓度具有显著影响.  相似文献   

11.
首都重大活动与空气重污染应急减排措施效果对比分析   总被引:3,自引:3,他引:0  
以2015年"9·3"阅兵活动及同年冬季两次空气重污染红色预警为例,针对气象要素及污染物浓度变化特征进行对比分析,对不同减排措施下污染物减排比例估算,并利用WRF-CAMx模型,对减排带来的PM_(2.5)污染改善效果进行了定量评估与对比分析.结果表明,阅兵期间(8月20日至9月4日)PM_(2.5)日均浓度(19.0μg·m~(-3))分别比阅兵前(8月15~19日)和阅兵后(9月5~15日)日均浓度降低了60.0%和48.0%,第一次红色预警期间PM_(2.5)日均浓度(232.3μg·m~(-3))高于第二次红警(216.6μg·m~(-3)),第二次启动重污染红色预警之前的空气质量好于第一次红警.阅兵期间北京及周边省市污染物减排比例普遍大于红警期间,为保障"阅兵蓝"的实现提供了人为可控的有利条件."9·3"阅兵、北京首次及第二次红色预警期间采取污染物应急减排措施情况下,北京PM_(2.5)浓度分别平均降低了32.4%、 17.1%和22.0%.阅兵期间与红色预警相比,PM_(2.5)浓度降低比例较高,归因于更大力度的区域污染物协同减排以及阅兵期间易于污染物扩散的气象条件.污染减排力度、应急控制措施实施时机以及气象条件是可能影响应急污染控制措施污染改善效果的重要因素.  相似文献   

12.
收集了地处高原的云南省全省8个地级市、8个自治州政府所在地城市共40个监测点2015年全年(2015.01.01—2015.12.31)的大气PM_(2.5)、PM_(10)、SO_2、NO_2、O_3、CO、O_3-8 h日均浓度数据,计算出年均浓度值、空气质量指数AQI,并根据《HJ633-2012环境空气质量指数(AQI)技术规定(试行)》对云南省各州市政府所在地城市空气质量进行评价。PM_(2.5)年均浓度值最高的是文山,为37.89μg/m~3;最低的是丽江,为16.21μg/m~3。空气质量评价结果表明,云南省2015年整体空气质量状况优良,空气质量状况最好的是香格里拉,空气质量指数为35.76;空气质量指数最高的是昭通,为68.26。SO_2、NO_2与PM_(2.5)的关系呈现正相关,PM_(10)的变化趋势与PM_(2.5)的变化趋势较一致。  相似文献   

13.
建立大气污染可控源排放-复合污染水平的函数关系,实现给定排放情景下环境污染物浓度的实时响应,是大气污染物浓度预测与减排效果评估等的重要技术前提.本研究对污染物浓度影响因子变化空间进行拉丁超立方采样,使用CMAQ区域多尺度空气质量模型的预测值作为输入数据,通过前馈神经网络模型构建基于统计机器学习的长三角区域污染物浓度快速响应模型.结果表明经过模型结构选择与参数调整,基于前馈神经网络的快速响应模型能够快速准确还原出不同减排情景下长三角区域PM_(2.5)浓度的预测值.外部验证情景下相关系数CORR达到0.999以上,MB与ME均值达到了-0.046μg·m~(-3)和0.6162μg·m~(-3),实现了比RSM更加快速与准确的预测,不同时段与不同污染物浓度的准确预测则验证了其普适性.  相似文献   

14.
为了分析贵州省六盘水市大气污染物浓度变化及排放清单,该文系统收集和整理2015-2018年大气污染物浓度观测资料和2015年排放清单。分析表明:2015-2018年,六盘水市环境空气优良率逐年增加,且在2018年达到98.2%。PM_(2.5)日均浓度有97 d超过国家环境空气质量二级标准(75μg/m~3)(GB 3095-2012),其中最大浓度为167μg/m~3;PM10有16 d超过二级标准(150μg/m~3);O_(3-8 h max)、NO_2、SO_2和CO日均浓度和年均浓度未超标。PM_(2.5)和PM_(10)年均浓度逐年降低,但PM_(2.5)在2015-2017年超标,浓度分别为42.6、40.7和40μg/m~3;PM10年均浓度在2016年和2017年超标,浓度分别为73.0和70.3μg/m~3。2015年六盘水市PM_(2.5)、PM_(10)、SO_2、NO_x、CO和VOCs排放总量分别为5.78万t、10.89万t、16.64万t、14.23万t、37.42万t和3.32万t。化石燃料固定燃烧源是PM_(10)、PM_(2.5)、SO_2、NO_x和CO的最大排放源。  相似文献   

15.
该文利用2018-2020年恩施市环境监测站同时段PM_(2.5)、PM_(10)、SO_2、NO_2、O_3、CO每日质量浓度监测资料,以及每日空气质量指数(AQI)资料,分析了近3年来恩施市的环境空气污染现状与成因。恩施州的主要污染物有PM_(2.5)、PM_(10)、O_3,最高浓度可达到65.03、96.87、109.13μg/m~3;恩施州空气质量指数为优、良、轻度污染、中度污染、重度污染的出现概率分别为50.69%、43.82%、4.57%、0.64%、0.27%,无严重以上污染日出现;气象条件对恩施州的空气质量有较大影响,PM_(2.5)浓度与月降水和月平均气温呈典型负相关,温度和降水量升值最高在7月时,PM_(2.5)的质量浓度降至最低11.61μg/m~3。研究发现,恩施州的空气质量变化程季节性变化,冬季空气质量最差,夏季最好;空气质量变化具有春节效应。结果可为恩施州的空气污染防治提供有效依据。  相似文献   

16.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

17.
利用2013—2017年冬季成都市国家环境监测子站PM_(2.5)小时数据,结合MICAPS常规气象观测数据及ERA-interim再分析资料,对成都市2013—2017年冬季空气质量状况、气象条件及近10年大气扩散能力进行综合评估.结果发现,2013—2017年成都冬季12月末—1月初易发生持续性重污染事件,2015—2017年冬季持续性重污染事件总天数较2013—2014年有所减少,2013年冬季PM_(2.5)浓度值最高,达到(149.3±72.2)μg·m~(-3),2015年最低((80.7±44.1)μg·m~(-3)),5年内冬季PM_(2.5)浓度值呈波动下降趋势,下降率为9.65%,成都市冬季空气质量状况总体有所改善.2013—2017年成都冬季日降水量清除率表明,大于1 mm的降水对PM_(2.5)有明显清除作用,而弱风和低边界层(加权平均)对PM_(2.5)的累积效应显著,2013和2016年空气质量较差由于累积气象主控导致,2015年空气质量较优是由于清除气象主控.综合PM_(2.5)浓度、边界层高度、地面风速和降水等因子,使用2498个有效样本构建成都地区冬季空气停滞气象条件阈值经验公式,为地面风速小于2.2 m·s~(-1)、边界层高度小于520 m且无有效降水(日降水量1 mm).以2015年冬季大气扩散条件为基准,量化同等扩散条件下减排对PM_(2.5)的影响,结果显示减排有效,但近10年成都地区大气扩散能力有所下降,说明今后大气污染防控将面临更大的挑战.  相似文献   

18.
基于江苏省2013年12月-2014年11月期间71个监测点PM_(2.5)日数据以及2014年土地利用数据,以年、季为时间尺度,利用泰森多边形划分研究区域,在系统分析PM_(2.5)时空分异规律基础上,揭示PM_(2.5)浓度变化及其与土地利用的关系。结果表明:(1)PM_(2.5)浓度分布存在明显的时空变化趋势。时间上,冬季浓度最高,达109.72μg/m~3,春季次之,为70.13μg/m~3,秋季最低,仅53.20μg/m~3;空间上,从各监测点一年PM_(2.5)浓度看,南京、泰州和宿迁数个监测点是PM_(2.5)高浓度区域,浓度范围81~85μg/m~3。盐城开发区管委会浓度最低,仅49.75μg/m~3,全省呈现"内陆高,沿海低;内陆南高北低"的趋势。(2)土地利用类型及景观格局对PM_(2.5)浓度分布有一定影响。耕地、草地、水域和未利用地与PM_(2.5)呈负相关,林地和建设用地则呈正相关。景观面积、密度、破碎度和聚散性是影响PM_(2.5)的主要因素,冬夏季较为敏感。  相似文献   

19.
青奥会前后南京PM2.5重金属污染水平与健康风险评估   总被引:7,自引:5,他引:2  
人类活动对大气环境的影响已成为人们关注的焦点.于青年奥林匹克运动会(青奥会,Youth Olympic Games)召开前后(2014年4~9月)动态监测南京大气中PM_(2.5)及其6种重金属质量浓度和污染特征,并分析其健康风险.结果表明,观测期间PM_(2.5)质量浓度变化范围为26.39~80.31μg·m~(-3),青奥会前的4、5和7月大气中PM_(2.5)质量浓度均达到国家空气质量二级标准(24 h质量浓度限值75μg·m~(-3)),青奥会期间达到国家空气质量一级标准(24 h质量浓度限值35μg·m~(-3)).青奥会结束后,空气污染出现反弹,大气PM_(2.5)质量浓度平均值为76.14μg·m~(-3).观测期间大气PM_(2.5)中重金属离子质量浓度的变化特征并不一致,主成分分析表明,污染物源排放是影响PM_(2.5)重金属离子质量浓度变化最重要因素.青奥会期间PM_(2.5)及重金属离子质量浓度均降至观测期间最低值,这与召开青奥会所采取的一系列政策干预减排措施发挥作用有关.PM_(2.5)中Cd、Cu、Ni、Pb通过呼吸和皮肤暴露的健康风险值均在可接受水平范围内,而Cr存在较大的致癌风险;Mn通过呼吸暴露对成年男性造成较大的非致癌风险;同时PM_(2.5)中6种重金属通过皮肤暴露对儿童也造成较大非致癌风险.  相似文献   

20.
利用中国环境监测总站的PM_(2.5)(Particulate Matter with aerodynamic≤2.5μm)数据、ERA-interim再分析资料等,结合混合单粒子拉格朗日综合轨迹模型(HYSPLIT4),重点分析了华北地区PM_(2.5)的时空分布特征及该地区PM_(2.5)重污染对我国东北、长三角地区空气质量的影响。结果表明,华北地区是中国PM_(2.5)的高值区,2015、2016和2017年华北地区年平均PM_(2.5)质量浓度分别为62.1、59.5和56.8μg/m~3,呈减小趋势。该地区冬季PM_(2.5)污染最严重,部分区域的平均浓度甚至超过110μg/m~3。个例研究表明,来自华北的污染物可在大约48 h后输送至东北和长三角地区,分别占当地污染物总量的21%和71%;同时,在冬季弱高压系统和地形的共同影响下,华北地区42%的污染物不易扩散而局限在本地,15%的污染物向长三角方向输送,不易向东北方向输送。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号