首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Luoto M  Rekolainen S  Aakkula J  Pykälä J 《Ambio》2003,32(7):447-452
The drastic loss of seminatural grasslands and the decrease in species diversity in Europe during the 20th century are closely linked to social-economic factors. Development in agricultural production drives land-use changes, and thus controls the capacity of landscapes to maintain biodiversity. In this study, we link agricultural production changes to landscape fragmentation and species diversity. Our results show that the termination of grazing on seminatural grassland caused significant changes in landscape structure and a decline in the number of vascular plant species. The decline of grazed grasslands has been driven mainly by farm-level economic efficiency and profitability interests, which have been connected with agricultural policy measures. Since 1995, when Finland joined the European Union, the area of grazed patches in our study area has again increased as a result of a support scheme for the management of seminatural grasslands.  相似文献   

2.
China's natural wetlands: past problems, current status, and future challenges   总被引:10,自引:0,他引:10  
An S  Li H  Guan B  Zhou C  Wang Z  Deng Z  Zhi Y  Liu Y  Xu C  Fang S  Jiang J  Li H 《Ambio》2007,36(4):335-342
Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% costal wetlands) because of the wetland reclamation during China's long history of civilization, and the population pressure and the misguided policies over the last 50 years. Recently, with an improved understanding that healthy wetland ecosystems play a vital role in her sustainable economic development, China started major efforts in wetland conservation, as signified by the policy to return reclaimed croplands to wetlands, the funding of billions of dollars to restore degraded wetlands, and the national plan to place 90% of natural wetlands under protection by 2030. This paper describes the current status of the natural wetlands in China, reviews past problems, and discusses current efforts and future challenges in protecting China's natural wetlands.  相似文献   

3.
Major oil sands industrial companies are located in the Athabasca Oil Sands Deposit in northeastern Alberta, Canada. During the process used to extract light crude oil (via hot water digestion and flotation), gypsum is usually added to produce consolidated tails (CT) and CT release water. The vast volumes of process-treated waters (effluent) are held within large dyked tailings ponds. Toward testing viable options for reclamation, various hummock-wetlands systems have been constructed; in addition, natural wetlands (inhabited by obligate wetland plant species) have become established as a result of seeping of the effluents held within the large dyked ponds. Vegetation surveys conducted on and around the industrial site revealed that the constructed wetlands associated with the dyke drainage (effluent treated with phosphorous) and consolidated tails (CT; effluent treated with gypsum) had low biodiversity and were not invaded by many aquatic plants. Although the natural wetland was also not invaded by many aquatic species, it was found to be as diverse as the reference wetlands (i.e. off-site wetlands not exposed to the effluents). Exposure to oil sands effluents had an inhibitory effect on the germination (percent and/or rate) of several plant species (tomato, clover, wheat, rye, pea, reed canary grass, loblolly pine); clover and tomato seed germination were most affected. Two treatments in particular (effluents from the natural on-site wetland and the CT constructed wetland), delayed germination, and also led to reduced fresh weight of seedlings of tomato, wheat, clover and loblolly pine. The osmolarities of the effluents associated with the natural on-site wetland and CT constructed wetland were 712 and 728 mOs/kg, respectively; substituting these effluents with solutions of polyethylene glycol of the same osmotic potentials had a greater inhibitory effect on germination rate. The negative effects of the effluents on seed germination may account for the paucity of aquatic species that invaded the oil sands impacted wetlands. This factor will also be critical in determining the long-term feasibility of hummock-wetland systems.  相似文献   

4.
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.  相似文献   

5.
Glyphosate is an herbicide used widely and increasingly since the early 1990s in production of many crops and in urban areas. However, knowledge on the transport of glyphosate and its degradation to aminomethylphosphonic acid (AMPA) in ecosystems receiving urban or agricultural runoff is lacking. Here we show that transport and attenuation of runoff-associated glyphosate and AMPA in a stormwater wetland differ and largely vary over time. Dissolved concentrations and loads of glyphosate and AMPA in a wetland receiving runoff from a vineyard catchment were assessed during three consecutive seasons of glyphosate use (March to June 2009, 2010 and 2011). The load removal of glyphosate and AMPA by the wetland gradually varied yearly from 75% to 99%. However, glyphosate and AMPA were not detected in the wetland sediment, which emphasises that sorption on the wetland vegetation, which increased over time, and biodegradation were prevailing attenuation processes. The relative load of AMPA as a percentage of total glyphosate increased in the wetland and ranged from 0% to 100%, which indicates the variability of glyphosate degradation via the AMPA pathway. Our results demonstrate that transport and degradation of glyphosate in stormwater wetlands can largely change over time, mainly depending on the characteristics of the runoff event and the wetland vegetation. We anticipate our results to be a starting point for considering degradation products of runoff-associated pesticides during their transfer in wetlands, in particular when using stormwater wetlands as a management practice targeting pesticide attenuation.  相似文献   

6.
Temperate forests can contain large numbers of wetlands located in areas of low relief and poor drainage. These wetlands can make a large contribution to the dissolved organic carbon (DOC) load of streams and rivers draining the forests, as well as the exchange of methane (CH4) and carbon dioxide (CO2) with the atmosphere. We studied the carbon budget of a small wetland, located in Kejimkujik National Park, Nova Scotia, Canada. The study wetland was the Pine Marten Brook site, a poor fen draining a mixed hardwood-softwood forest. We studied the loss of DOC from the wetland via the outlet stream from 1990 to 1999 and related this to climatic and hydrologic variables. We added the DOC export information to information from a previously published model describing CH4 and CO2 fluxes from the wetland as a function of precipitation and temperature, and generated a new synthesis of the major C losses from the wetland. We show that current annual C losses from this wetland amount to 0.6% of its total C mass. We then predicted that under climate changes caused by a doubling of atmospheric CO2 expected between 2040 and 2050, total C loss from the wetland will almost double to 1.1% of total biomass. This may convert this wetland from what we assume is currently a passive C storage area to an active source of greenhouse gases.  相似文献   

7.
人工湿地系统微生物去除污染物的研究进展   总被引:7,自引:1,他引:6  
人工湿地污水处理系统具有净化效果显著、建设和运行费用低廉、管理简便等优点,近年来越来越受到人们的重视。人工湿地是利用介质、植物和微生物构成的复合系统来处理污水。微生物在人工湿地系统净化污水过程中发挥着重要作用。介绍了人工湿地系统中微生物去除污染物的研究进展,重点讨论了人工湿地对污染物和特殊有机污染物的去除以及系统基质中微生物的种群和活性等内容,并结合我国研究现状展望了该领域的研究前景。人工湿地系统微生物对污染物去除将成为人工湿地生态系统服务功能评价、人工湿地生态系统健康与稳定的诊断的重要组成部分。  相似文献   

8.
Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth’s arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world’s preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth’s total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity’s highest priorities.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01318-8) contains supplementary material, which is available to authorized users.  相似文献   

9.
A toxicological evaluation was conducted on wetland habitats created as a result of run-off from agricultural areas. These temporary wetlands were created by using drop pipes as a means of reducing erosional cutting in agricultural fields. Toxicity bioassays utilizing bacterial bioluminescence and Hyalella azteca were used to assess sediment pore water and whole sediment, respectively. Inhibition of bacterial bioluminescence was initially used to determine relative toxicities of pore water from ten wetland sites. Constructed wetland sites were compared to the University of Mississippi Biological Field Station, a relatively pristine reference site. The H. azteca ten day sediment toxicity test was utilized to assess sediment from four selected sites using survival and growth as toxicological endpoints. Results from the toxicological evaluation, along with extensive ecological evaluations, were used to assess the best approach for implementation of temporary wetland habitats with existing agricultural practices.  相似文献   

10.
The Mekong at climatic crossroads: Lessons from the geological past   总被引:1,自引:0,他引:1  
Penny D 《Ambio》2008,37(3):164-169
The wetlands of the lower Mekong River Basin are ecologically and socioeconomically significant, but they are threatened by predicted climatic change. The likely response of wetland ecosystems to altered flooding regimes and surface-water chemistry is unknown in detail and difficult to model. One way of exploring the impact of climate change on wetland ecosystems is to utilize proxy environmental data that reveal patterns of change over geological time. In recent years, the coverage and resolution of proxy climatic data have improved markedly in the region. Recent evidence of the South China Sea transgression into southern and central Cambodia and paleobotanical evidence from the Tonle Sap ("Great Lake") and elsewhere allow us to explore how periods of higher-than-present sea level and increased monsoon rainfall in the past have impacted the wetland ecology of the lower Mekong River Basin.  相似文献   

11.
The relative impacts of hunting and habitat on waterbird community were studied in agricultural wetlands of southern India. We surveyed wetlands to document waterbird community, and interviewed hunters to document hunting intensity, targeted species, and the motivations for hunting. Our results show that hunting leads to drastic declines in waterbird diversity and numbers, and skew the community towards smaller species. Hunting intensity, water spread, and vegetation cover were the three most important determinants of waterbird abundance and community structure. Species richness, density of piscivorous species, and medium-sized species (31–65 cm) were most affected by hunting. Out of 53 species recorded, 47 were hunted, with a preference for larger birds. Although illegal, hunting has increased in recent years and is driven by market demand. This challenges the widely held belief that waterbird hunting in India is a low intensity, subsistence activity, and undermines the importance of agricultural wetlands in waterbird conservation.  相似文献   

12.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT50 values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

13.
Extensive changes in land cover during the 20th century are known to have had detrimental effects on biodiversity in rural landscapes, but the magnitude of change and their ecological effects are not well known on regional scales. We digitized historical maps from the beginning of the 20th century over a 1652 km2 study area in southeastern Sweden, comparing it to modern-day land cover with a focus on valuable habitat types. Semi-natural grassland cover decreased by over 96 % in the study area, being largely lost to afforestation and silviculture. Grasslands on finer soils were more likely to be converted into modern grassland or arable fields. However, in addition to remaining semi-natural grassland, today’s valuable deciduous forest and wetland habitats were mostly grazed grassland in 1900. An analysis of the landscape-level biodiversity revealed that plant species richness was generally more related to the modern landscape, with grazing management being a positive influence on species richness.  相似文献   

14.
刍议长三角地区的生态建设   总被引:1,自引:0,他引:1  
长三角地区城市化和工业化带来区域经济迅猛发展的同时,也导致了长三角生态系统组分比例失调、结构缺损、功能丧失、环境容量萎缩等生态问题.湿地兼有自然"肾"、"肺"双功能.利用长三角地区湿地生态系统的独特性和内在优势,加强湿地生态建设、生态保护、生态恢复与生态重建,拓展环境容量,可保障该区域可持续发展的实现.从地质地貌、自然史发展、自然经济学和区域发展等角度探讨了长三角地区湿地的生态服务价值的现存价值和理论价值,分析讨论了长三角自然湿地、城市区湿地和农业区湿地的生态建设思路.  相似文献   

15.
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient of several herbicide products first registered for use in 1974 under the tradename Roundup. The use of glyphosate-based herbicides has increased dramatically over the last two decades particularly in association with the adoption of glyphosate-tolerant crops. Glyphosate has been detected in a range of surface waters but this is the first study to monitor its fate in prairie wetlands situated in agricultural fields. An ephemeral wetland (E) and a semi-permanent wetland (SP) were each divided into halves using a polyvinyl curtain. One half of each wetland was fortified with glyphosate with the added mass simulating an accidental direct overspray. Glyphosate dissipated rapidly in the water column of the two prairie wetlands studied (DT(50) values of 1.3 and 4.8 d) which may effectively reduce the impact of exposure of aquatic biota to the herbicide. Degradation of glyphosate to its major metabolite aminomethylphosphonic acid (AMPA) and sorption of the herbicide to bottom sediment were more important pathways for the dissipation of glyphosate from the water column than movement of the herbicide with infiltrating water. Presently, we are not aware of any Canadian guidelines for glyphosate residues in sediment of aquatic ecosystems. Since a substantial portion of glyphosate entering prairie wetlands will become associated with bottom sediments, particularly in ephemeral wetlands, guidelines would need to be developed to assess the protection of organisms that spend all or part of their lifecycle in sediment.  相似文献   

16.
Lake Apopka is a shallow, hypereutrophic lake in north-central Florida that experienced an abrupt shift in primary producer community structure (PPCS) in 1947. The PPCS shift was so abrupt anecdotal accounts report that dominant, submersed aquatic vegetation was uprooted by a hurricane in 1947 and replaced by phytoplankton within weeks. Here we propose two hypotheses to explain the sudden shift to phytoplankton. First, hydrologic modification of the drainage basin in the late 1800s lowered the lake level ca. 1.0 m, allowing the ecosystem to accommodate moderate, anthropogenic nutrient enrichment through enhanced production in the macrophyte community. Second, additional hydrologic changes and large-scale agricultural development of floodplain wetlands began in 1942 and altered the pattern and scale of phosphorus loading to the lake that triggered the rapid shift to phytoplankton dominance in 1947. Historic land-use changes and paleolimnological data on biological responses to nutrient loading support these hypotheses.  相似文献   

17.
The springtime methane (CH4) emission from a small, eutrophied boreal lake was assessed during the winter ice-cover by measurement of gas ebullition and CH4 accumulation in the water column in association with the development of oxygen depletion after ice formation. The winter CH4 production was estimated to result in a loss of 3.6-7.9 g CH4 m(-2) from the lake to the atmosphere during the short period of ice melt. This could account for 22-48% of the annual CH4 emission from the pelagic zone of the lake. The contribution of winter to the annual CH4 release can be similar or even higher in seasonally ice-covered northern aquatic ecosystems than in northern terrestrial wetlands, thus winter must be considered in any studies into the aquatic CH4 emissions. The trophic state and wintertime oxygen conditions, linked to the changes in land-use in the catchments and climate, are important factors controlling the springtime lake CH4 emissions.  相似文献   

18.

Shengjin Lake wetland is located in the middle and lower reaches of the Yangtze River in China. It is a typical lake-type wetland and is also an ideal place for rare cranes to overwintering. The changes of wetland landscape are closely related to the habitat quality of wintering cranes. It is of great significance to study the habitat change of wintering cranes in wetland for wetland ecological restoration and restoration. In this paper, we analyze four kinds of winter cranes and wetland landscape pattern types from the years 1986 to 2015. Also, we adopted the Pearson correlation analysis method to analyze the relationship between wetland landscape types and crane population, and the main landscape types of cranes habitat were obtained. We selected disturbance degree, food richness, vegetation cover, and hydrological condition as the main factors affecting wintering habitat of cranes. We established a habitat suitability index model for wintering cranes and generated habitat suitability assessment maps by ArcGIS. The results show that the change of landscape pattern in Shengjin Lake protected area was obvious, the number of wetland patches increased, the fragmentation degree of landscape increased, the landscape patch difference became smaller, and the diversity index and evenness index increased gradually. From 1986 to 2015, the number of wintering cranes decreased and the habitat suitability index of wintering cranes decreased from 0.845 to 0.465, and the habitat suitability of wintering cranes fell from 13,577.11 to 7424.42 ha, which showed the overall habitat deteriorated significantly and had a positive correlation between the crane population and habitat suitability.

  相似文献   

19.
In many regions of the world, biodiversity surveys are not routinely conducted prior to activities that lead to land conversion, such as development projects. Here we use top-down methods based on global range maps and bottom-up methods based on macroecological scaling laws to illuminate the otherwise hidden biodiversity impacts of three large hydroelectric dams in the state of Sarawak in northern Borneo. Our retrospective impact assessment finds that the three reservoirs inundate habitat for 331 species of birds (3 million individuals) and 164 species of mammals (110 million individuals). A minimum of 2100 species of trees (900 million individuals) and 17 700 species of arthropods (34 billion individuals) are estimated to be affected by the dams. No extinctions of bird, mammal, or tree species are expected due to habitat loss following reservoir inundation, while 4–7 arthropod species extinctions are predicted. These assessment methods are applicable to any data-limited system undergoing land-use change.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0683-3) contains supplementary material, which is available to authorized users.  相似文献   

20.
滨河湿地对农业非点源氮污染控制研究进展   总被引:3,自引:0,他引:3  
氮素是农业径流最重要、最普遍的水体污染物。滨河湿地因受到陆地生境和水生生境双重影响而显得非常独特,作为重要的陆地和水生环境的生态交错带,滨河湿地能够阻断和改变水运污染物,特别是农业径流中的氮排入临近的小溪和河流。植物吸收和反硝化作用是滨河湿地两种最重要的截留和缓解氮负荷的有效途径,氮素可以通过生物转化、植物吸收、微生物暂时固氮等方式去除,但是永久性的去除氮却是通过反硝化过程来完成的。为了系统认识和了解滨河湿地生态系统对农业非点源氮污染控制过程,通过大量文献分析讨论了滨河湿地对农业非点源氮的净化能力、净化机制及其影响因素,并结合我国研究现状展望了该领域的研究前景。滨河湿地对农业非点源氮污染的控制作用研究将成为滨河湿地生态系统服务功能评价、滨河湿地生态系统健康与稳定的诊断和退化滨河湿地生态系统修复的重要基础理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号