首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two hundred and fifty-seven urine samples collected from school children living in the Manzini region, Swaziland, were analysed for lead (Pb), using a graphite furnace atomic absorption spectrometer. The mean urine lead concentration for the urban schools ranged from 0.038–0.040 gml–1, while that for the rural schools ranged from 0.017–0.022 gml–1. The observed range shown by the urban schools was above the normal (for healthy humans) urine lead concentration of 0.035 gml–1. However, the mean urine lead concentration for the rural schools was found to be lower than this value. The mean urine lead concentration for the urban schools was significantly higher than that of the rural schools. The differences in the mean urine lead concentrations for boys and girls from both urban and rural schools were found not to be significant, despite the higher values shown by the girls. The difference in lead concentrations between urban and rural schools in Manzini was thought to be due to the traffic density within the urban area.  相似文献   

2.
The present study investigated the effectiveness of an inexpensive and ecofriendly alumino silicate clay mineral, sericitic pyrophyllite, as an adsorbent for the possible application in the removal of some divalent toxic metal cations such as Pb(2+), Cu(2+)and Zn(2+) from aqueous systems. Batch scale equilibrium adsorption studies were carried out for a wide range of initial concentration from 24.1 to 2410mumolL(-1) for lead, 78.65 to 7865mumolL(-1) for copper and 76.45 to 7645mumolL(-1) for zinc solutions. The removal of Pb(2+) was almost complete at low concentration (maximum lead removal capacity, LRC, 32mg of lead/g of pyrophyllite) with 10gL(-1) of adsorbent in a 30min equilibration time. The effects of temperature on adsorption of heavy metal ions were studied. The applicability of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models in each case of lead, copper and zinc adsorption was examined separately at different temperatures. The adsorption process was found to be endothermic and the Freundlich adsorption model was found to represent the data at different temperatures more suitably.  相似文献   

3.
Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (ΔH°), Gibbs free energy (ΔG°) and entropy (ΔS°) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.  相似文献   

4.
Bioassessment is used worldwide to monitor aquatic health but is infrequently used with risk-assessment objectives, such as supporting the development of defensible, numerical water-quality criteria. To this end, we present a generalized approach for detecting potential ecological thresholds using assemblage-level attributes and a multimetric index (Index of Biological Integrity—IBI) as endpoints in response to numerical changes in water quality. To illustrate the approach, we used existing macroinvertebrate and surface-water total phosphorus (TP) datasets from an observed P gradient and a P-dosing experiment in wetlands of the south Florida coastal plain nutrient ecoregion. Ten assemblage attributes were identified as potential metrics using the observational data, and five were validated in the experiment. These five core metrics were subjected individually and as an aggregated Nutrient–IBI to nonparametric changepoint analysis (nCPA) to estimate cumulative probabilities of a threshold response to TP. Threshold responses were evident for all metrics and the IBI, and were repeatable through time. Results from the observed gradient indicated that a threshold was 50% probable between 12.6 and 19.4 g/L TP for individual metrics and 14.8 g/L TP for the IBI. Results from the P-dosing experiment revealed 50% probability of a response between 11.2 and 13.0 g/L TP for the metrics and 12.3 g/L TP for the IBI. Uncertainty analysis indicated a low (typically 5%) probability that an IBI threshold occurred at 10 g/L TP, while there was 95% certainty that the threshold was 17 g/L TP. The weight-of-evidence produced from these analyses implies that a TP concentration > 12–15 g/L is likely to cause degradation of macroinvertebrate assemblage structure and function, a reflection of biological integrity, in the study area. This finding may assist in the development of a numerical water-quality criterion for TP in this ecoregion, and illustrates the utility of bioassessment to environmental decision-making.  相似文献   

5.
Nostoc calcicola cells exposed to mercuric chloride (0.05–0.25 M), methyl mercuric chloride (0.05–0.15 M) and the fungicide ceresan (phenyl mercuric acetate; 0.05–0.20 M) showed sensitivity in the sequence: methyl mercury3) over phenyl mercuric acetate (0.51×103); inorganic mercury occupied the intermediate position with a bioconcentration factor of 1.32×103. The data infer that larger molecules of organomercurials may not be taken up by cells at the rate and extent comparable to the smaller species.  相似文献   

6.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   

7.
The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g−1) and Pb(II) (238.98 mg g−1) was observed when used 1.0 g L−1 of TIC suspension, 50 mg L−1 of initial Cd(II) and 250 mg L−1 of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g−1 and 53.76 mg g−1 for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5–40 °C.  相似文献   

8.
Arsenic levels in seawater, microplankton (diatoms and dinoflagellates), shrimp (Penaeus semisulcatus), mollusc (Cerithium scabridum) and five types of fish (Maid, Nakroor, Nuwaiby, Suboor and Sheim) in five sampling stations (I–V) off the Kuwait coast were determined during the years 1995 to 1999. The maximum mean concentration of arsenic was observed in the order; the five fish (0.50–0.78 g g–1)> mollusc (0.26 g g–1)> shrimp (0.23 g g–1)> particulate matter (0.03 g g–1)> water and phytoplankton (0.02 g g–1) from all the sites of the Kuwait coast. Station II possessed the maximum arsenic levels. In comparison with the arsenic levels in other parts of the globe, low arsenic levels were observed in most of the marine organisms off the Kuwait Coast. However, an increasing trend in arsenic concentrations was anticipated due to rapid local industrialization and on account of recent spills of arsenic compounds.  相似文献   

9.
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions.The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio.Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 °C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others.Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.  相似文献   

10.
A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.  相似文献   

11.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

12.
In the present study, chemically modified Aleppo pine (Pinus halepensis Miller) sawdust was used for the removal of phosphate from water. Biosorbent preparation process included size fractionation, extraction for surface activation, acid prehydrolysis, and treatment with urea. Sorption of phosphate ions onto biosorbent was studied using the batch technique. The effect of different parameters such as contact time, adsorbate concentration, and temperature was investigated. The adsorption kinetics data were best described by the pseudo-second-order rate equation, and equilibrium was achieved after 40 and 80 min for modified and unmodified sawdust, respectively. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. The adsorption isotherms obey the Freundlich equation. The thermodynamic parameters like free energy, enthalpy, and entropy changes for the adsorption of phosphate ions have been evaluated, and it has been found that the reaction was spontaneous and endothermic in nature. The low value of activated energy of adsorption, 3.088–3.540 kJ mol−1, indicates that the phosphate ions are easily adsorbed on the sawdust. Results suggest that the prepared chemically modified Aleppo pine sawdust has potential in remediation of contaminated waters by phosphate.  相似文献   

13.
Enhanced concentrations of Fe, Zn, Mn, Pb, Cu, Cd and total hydrocarbons (THC) determined in fish samples from the Cross River system, Nigeria have been associated with clinical defects (nausea, headache, hepatitis, body rashes) observed in coastal residents who are the major consumers of the fish species. Fish samples were collected from ten locations with varying degrees of exposure to human activities. Heavy metal concentrations in fish followed the sequence: Fe>Zn>Mn>Pb>Cu>Cd with the highest concentration of 243 g/g (Fe) wet weight occurring in Tympanotonus sp. Fe levels were significantly (P<0.001) higher than other metals analysed. The sequence in total hydrocarbon concentrations according to fish species was in the order of O. niloticus (55.1 g/g) > E. fimbriata > P. elongatus > Portonus sp. > C. nigrodigitatus > Tympanotonus sp. Generally, the demersal species showed a marked potential for tolerating high levels of heavy metals while the pelagic species showed preference for the accumulation of hydrocarbons. The degree of contamination depended on pollutant type, fish species, sampling location, trophic level and their mode of feeding. The persistent accumulation and tolerable potential of Tympanotonus, Portonus and P. elongatus suggest that they might be effectively utilized as self-integrating indicators for time-series monitoring of the rate of recovery of the impacted ecosystem by heavy metals. Possible sources of pollutant include leachates from municipal dumps, used crankcase oils from fluvial discharges (mechanic workshops) and occasional oil spills.  相似文献   

14.
Vehicular Contamination of Dust in Amman, Jordan   总被引:1,自引:0,他引:1  
Road dust from four traffic areas; the city center, tunnels, closed car parks and a residential area was collected from the urban part of Amman and analyzed for polycyclic aromatic hydrocarbons (PAH) and heavy metals content.Total PAH and selected heavy metals were in the range of a few gg–1. The distribution of PAH was controlled by the arid climatic conditions. PAH distribution in the street dust tended to be dominated by 4- and 6-ring PAHs with significantly less 2- and 3-ring PAH reflecting volatilization of the latter under the hot and dry climatic conditions. However, both PAH and heavy metal concentrations were affected by the densities and conditions of traffic activity at the various sites. Generally, the highest concentrations of both PAH and heavy metals were found in the tunnels and the lowest in the residential areas.Significant correlation between PAH and total organic matter (TOM), lead and cadmium indicated that PAH and heavy metals in street dust of heavily traffic areas are strongly affected by automobile exhaust emission and that those in the residential areas have another source, most probably street material erosion.  相似文献   

15.
Dissolved copper was toxic to wild rice (Zizania palustris) seedlings when exposed in water from the seed collection site of Swamp Creek, Crandon, Wisconsin, USA, and in laboratory-prepared artificial or reconstituted water. Seeds for the study were harvested, then held through a portion of dormancy, in Swamp Creek. After 60 days they were shipped to a laboratory, chilled, and tested with copper after germination. The end point of the tests was net gain in wet weight of the seedlings; additionally, a pronounced reduction in root development was observed. Using measured concentrations, the lowest no-observable-effect concentration (NOEC) in our study was 37 g/liter in Swamp Creek water and the lowest-observable-effect concentration (LOEC) was 59 g/liter. However, it appeared that there was a point at which concentrations of copper above 400 g/liter did not result in any measurable effect or exhibit a definitive dose–response. Because the results in Swamp Creek water were more relevant to the possibility of local metals additions and the association of reduced seedling growth by copper was more powerful in this water, we derived an equation to express the relationship between copper concentration and toxicity for Swamp Creek water. As an example, we would expect a 3.0% reduction in seedling growth at 5.0 g/liter copper. Seedling roots were particularly affected and the resultant plants may be less well anchored and more susceptible to dislodging than plants not exposed to copper. Further refinement of the methodology may be used to address effects of other contaminants impacting rice beds in North America. This study was conducted while the first author was employed by the U.S. Geological Survey, Mid-continent Ecological Science Center, Fort Collins, Colorado  相似文献   

16.
This paper discusses the adsorption capacity of silica gel sludge for phenol removal from aqueous solution. Kinetic experiments showed that phenol adsorption was completed after 2 h. Adsorption isotherms were measured for phenol from aqueous solution onto silica gel sludge under various pHs and temperatures. Results showed that the adsorption capacities for phenol was increased as pH decreased from 6.5 to 2. Temperature also was found to affect the adsorption isotherm. As temperature increases from 30 to 50°C, the adsorption capacity increases. The adsorption equilibrium of phenol on silica gel sludge was described by the linear Freundlich and Langmuir models. Furthermore, results showed that the isotherm parameters fit both linearized Langmuir and Freundlich adsorption isotherms. The Freundlich and Langmuir parameters at optimum pH was found as K f=2.89, 1/n=0.23 and K d=22.0, q m=7.98, respectively. Whereas, for those at optimum temperature it was observed as K f=2.87, 1/n=0.16 and K d=20.93, q m=7.91, respectively.  相似文献   

17.
Adsorption of Pb and Cd in the presence and absence of organochlorine pesticides (OCPs) on natural surface coatings (NSCs), which were collected in the Nanhu Lake in Changchun, China, was measured in order to investigate the effect of the OCPs on the adsorption of heavy metals on the NSCs. Adsorption of Pb/Cd was carried out under controlled laboratory conditions (mineral salt solution with defined species, ionic strength 0.05 mol/l, 25 degrees C and pH 6.0) with initial Pb and Cd concentrations ranging from 0.2 to 2.5 mol/l. The classical Langmuir adsorption isotherm was applied to estimate the equilibrium coefficients of the adsorption of Pb and Cd on the NSCs. Adsorption interference between Pb/Cd and the OCPs on the NSCs indicated that the adsorption of Pb/Cd on the NSCs was influenced by the OCPs, and competitive adsorption between Pb and the OCPs was observed while adsorption of Cd was enhanced by addition of the OCPs. Adsorption data fit the Langmuir isotherm well for the NSCs treated with the OCPs at different equilibrium concentrations. The results showed that the amount of adsorbed Pb decreased by more than 40% while the amount of adsorbed Cd increased by over 60% with an increase in the initial concentrations of the OCPs ranging from 0 to 5.0 microg/l and that adsorption of Pb/Cd on the NSCs was strongly affected by the OCPs. This preliminary study highlights the importance of the OCPs on the NSCs in controlling the transport, fate, biogeochemistry, bioavailability and toxicity of trace metals in aquatic environments.  相似文献   

18.
The distribution of environmental pollutant, sulphur, over Kano municipality was monitored on the basis of the chemical analysis of Scots Pine (Pinus sylvestris L.) needles collected from randomly selected sampling points over the period 1995–1996. Of the five zones in which the municipal area was subdivided, two could be regarded as least polluted, two as moderately polluted and one zone as heavily polluted. The mean value of all measurements in the metropolis amounted to 1940 gg–1 S with a co-efficient of variation of 38 percent.  相似文献   

19.
The adsorption properties and mechanisms of a cationic-polymer/bentonite complex (EPI-DMA/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were analyzed using the Langmuir and Freundlich models. The Langmuir model is the most suitable to describe non-ionic dye adsorption, but for anionic dyes the Freundlich model is best. The kinetic data for the adsorption of different dyes were analyzed using pseudo first- and second-order equations, and the experimental data conformed to the pseudo second-order kinetic model better. The possibility of intraparticle diffusion was also examined by using the intraparticle diffusion equation. The single-stage batch adsorber design for the adsorption of both types of dyes onto EPI-DMA/bentonite was studied based on the Langmuir isotherm model for non-ionic dyes and the Freundlich isotherm model for anionic dyes. The results showed that the required amount of EPI-DMA/bentonite for 95% dye removal in 5 L dye solution with a concentration of 50 mg/L is 378.0 g for DB SBL, 126.5 g for VS R, 9.7 g for RV K-3R and 15.5 g for ADB 2G.  相似文献   

20.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号