首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

2.
The destruction of a carbon tetrachloride DNAPL and a chloroform DNAPL was investigated in reactions containing 0.5 mL of DNAPL and a solution of modified Fenton's reagent (2M H2O2 and 5mM iron(III)-chelate). Carbon tetrachloride and chloroform masses were followed in the DNAPLs, the aqueous phases, and the off gasses. In addition, the rate of DNAPL destruction was compared to the rate of gas-purge dissolution. Carbon tetrachloride DNAPLs were rapidly destroyed by modified Fenton's reagent at 6.5 times the rate of gas purge dissolution, with 74% of the DNAPL destroyed within 24h. Use of reactions in which a single reactive oxygen species (hydroxyl radical, hydroperoxide anion, or superoxide radical anion) was generated showed that superoxide is the reactive species in modified Fenton's reagent responsible for carbon tetrachloride DNAPL destruction. Chloroform DNAPLs were also destroyed by modified Fenton's reagent, but at a rate slower than the rate of gas purge dissolution. Reactions generating a single reactive oxygen species demonstrated that chloroform destruction was the result of both superoxide and hydroxyl radical activity. Such a mechanism of chloroform DNAPL destruction is in agreement with the slow but relatively equal reactivity of chloroform with both superoxide and hydroxyl radical. The results of this research demonstrate that modified Fenton's reagent can rapidly and effectively destroy DNAPLs of contaminants characterized by minimal reactivity with hydroxyl radical, and should receive more consideration as a DNAPL cleanup technology.  相似文献   

3.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

4.
Nanoscale zero-valent iron (nZVI) has received considerable attention as a potential in situ remediation technology for treating chlorinated solvent source zones. Experimental and mathematical modeling studies were conducted to investigate the performance of nZVI in the transformation of tetrachloroethene (PCE) entrapped as a dense nonaqueous phase liquid (DNAPL). Injection of a 60 g/L suspension of nZVI into a column containing 20-30 mesh Ottawa sand and PCE-DNAPL at a residual saturation of 5.5% resulted in a uniform distribution of nZVI and minimal displacement of PCE. Subsequent flushing with 267 pore volumes of water containing 3mM CaCl(2) at a Darcy velocity of 0.75 m/day resulted in steady-state effluent concentrations of PCE near the solubility limit (ca. 200mg/L) and production of dissolved-phase ethene (10-30 mg/L). Over the duration of the experiment, approximately 30% of the initial PCE-DNAPL mass reacted to form ethene, 50% was eluted as dissolved-phase PCE, and 20% remained in the column as PCE-DNAPL. To further explore the implications of the nZVI column results, a multiphase transport model was developed that incorporated rate-limited PCE-DNAPL dissolution and reactions with nZVI. Using a fitted pseudo first-order transformation rate coefficient of 1.421/h, the model accurately captured observed trends in effluent concentrations of PCE and ethene and overall mass balance. A model sensitivity study reveals a strong dependence of treatment effectiveness on system characteristics. The sensitivity analysis suggests that an increase in the extent of PCE transformation is facilitated by decreasing flow rate, emplacement of nZVI down-gradient of the DNAPL source zone, and decreasing length of the DNAPL source zone. These findings indicate that, although emplacement of high concentrations of nZVI within a PCE-DNAPL source zone can result in substantial transformation of the parent compound, careful attention to design parameters (e.g. flow rate, location and amount nZVI delivered) will be required to achieve complete conversion to benign reaction products.  相似文献   

5.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

6.
The partitioning tracer technique is among the DNAPL source-zone characterization methods being evaluated, while surfactant in-situ flushing is receiving attention as an innovative technology for enhanced source-zone cleanup. Here, we examine in batch and column experiments the magnitude of artifacts introduced in estimating DNAPL content when residual surfactants are present. The batch equilibrium tests, using residual surfactants ranging from 0.05 to 0.5 wt.%, showed that as the surfactant concentrations increased, the tracer partition coefficients decreased linearly for sodium hexadecyl diphenyl oxide disulfonate (DowFax 8390), increased linearly for polyoxyethylene (10) oleyl ether (Brij 97), and decreased slightly or exhibited no observable trend for sodium dihexyl sulfosuccinate (AMA 80). Results from column tests using clean sand with residual DowFax 8390 and Tetrachloroethylene (PCE) were consistent with those of batch tests. In the presence of DowFax 8390 (less than 0.5 wt.%), the PCE saturations were underestimated by up to 20%. Adsorbed surfactants on a loamy sand with positively charged oxides showed false indications of PCE saturation based on partitioning tracers in the absence of PCE. Using no surfactant (background soil) gave a false PCE saturation of 0.0004, while soil contacted by AMA 80, Brij 97, and DowFax 8390 gave false PCE saturations of 0.0024, 0.043, and 0.23, respectively.  相似文献   

7.
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.  相似文献   

8.
This paper reports the degradation of 2,4-DP (2-(2,4-dichlorophenoxy)-propionic acid) solutions of pH 3.0 by environmentally friendly electrochemical methods such as anodic oxidation, electro-Fenton and photoelectro-Fenton with a Pt or boron-doped diamond (BDD) anode. In the two latter techniques an O(2)-diffusion cathode was used and 1.0mM Fe(2+) was added to the solution to give hydroxyl radical (*OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the cathode. All treatments with BDD are viable to decontaminate acidic wastewaters containing 2,4-DP since they give complete mineralization, with loss of chloride ion, at high current due to the great production of oxidant *OH at the BDD surface favoring the destruction of final carboxylic acids. *OH formed from Fenton's reaction destroys more rapidly aromatic products, making the electro-Fenton and photoelectro-Fenton processes much more efficient than anodic oxidation. UVA light in photoelectro-Fenton with BDD has little effect on the degradation rate of pollutants. The comparative procedures with Pt lead to slower decontamination because of the lower oxidizing power of this anode. The effect of current on the degradation rate and efficiency of all methods is studied. The 2,4-DP decay always follows a pseudo-first-order kinetics. Chlorohydroquinone, chloro-p-benzoquinone and maleic, fumaric, malic, lactic, pyruvic, acetic, formic and oxalic acids are detected as products by chromatographic techniques. A general sequence accounting for by the reaction of all these intermediates with the different oxidizing agents is proposed.  相似文献   

9.
In situ chemical oxidation (ISCO) is an emerging technology for the destruction of some chlorinated solvents present in subsurface environments. A laboratory investigation using a physical model was designed to assess the effectiveness of using permanganate as an oxidant to reduce the mass of a perchloroethylene (PCE) pool. The physical model was filled with silica sand overlying a silica flour base, simulating a two-dimensional saturated sand zone overlying a capillary barrier. PCE was introduced into the model so that it rested on top of the silica flour base, forming a dense nonaqueous phase liquid pool. The experimental methodology involved flushing the model with a permanganate solution for 146 days. During this period, measurements of chloride were used to assess the extent of pool oxidation. Before and after the oxidant flush, the quasi-steady state dissolution from the PCE pool was evaluated. Additionally, tracer studies were completed to assess changes in the flow field due to the oxidation process. At the termination of the experiment nine soil cores extracted from the model were used to detect the presence of MnO2 deposits and to quantify the mass of PCE remaining in the system. Excavation of the remaining material in the model revealed that the MnO2 distribution throughout the model was consistent with that observed in the cores. The oxidant flush was concluded before all of the pure phase PCE had been completely oxidized; however, approximately 45% of the PCE mass was removed, resulting in a fourfold decrease in the quasi-steady state aqueous phase mass loading of PCE from the pool. Measurements of chloride during the oxidant flush and of PCE in the soil cores suggested that the oxidation reaction occurred primarily at the upgradient edge of the PCE pool. MnO2 deposits within the model aquifer decreased the velocity of water directly above the pool, and the overall mass transfer from the remaining PCE pool. The results of this experimental study indicate that ISCO using permanganate is capable of removing substantial mass from a DNAPL pool; however, the performance of ISCO as a pool removal technology will be limited by the formation and precipitation of hydrous MnO2 that occurs during the oxidation process.  相似文献   

10.
A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30 degrees dip angle, which was similar to PCE recovery for injection in the downward flow direction. Lower areal PCE recovery at greater dip angles in either direction of flow was attributed to DNAPL swelling and migration, flood front instabilities and bypassing of the displaced fluid past the extraction wells during the alcohol pre-flood. Additional results demonstrate that the use of an alcohol pre-flood can be beneficial in improving DNAPL recovery in the horizontal orientation, but pre-flooding may reduce areal recovery efficiency in dip-angle orientations. This study also demonstrates the use of theoretical perturbation (fingering) analysis in predicting NAPL recovery efficiency for flooding processes in remediating aquifers with dip angles.  相似文献   

11.
In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO(4)) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO(2)) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO(2) formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO(2) formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO(2) deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, MnO(2) formation was found to reduce permeability in and around DNAPL source zones resulting in changes to the overall flow pattern, with the effects depending on source zone configuration. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO(2) pore-blocking that substantially reduced mass transfer from the pool even though there was relatively little PCE mass removed from the pool. In contrast, a pool with residual around it (in a more typical heterogeneous flow field) appeared to undergo increased mass transfer as MnO(2) reduced permeability, altering the water flow and increasing the mixing at the DNAPL-water interface. Further, the magnitude of increased PCE mass depletion during oxidation appeared to depend on the PCE source configuration (pool versus ganglia) and decreased as MnO(2) was formed and deposited at the DNAPL-water interface. Overall, the oxidation of PCE mass appeared to be rate-limited by the mass transfer from the DNAPL to aqueous phase.  相似文献   

12.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

13.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   

14.
The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.  相似文献   

15.
Arienzo M 《Chemosphere》2000,40(4):441-448
The possibility to clean-up TNT contaminated soil, 400 mg TNT kg-1, surrounding Nebraska Ordnance Plant's (US), below the USEPA goal of 17.2 mg TNT kg-1 using Fenton oxidation (Fe2+ + H2O2), Fe0 reduction, combined Fe0/H2O2 and CaO2 was explored at pilot scale. Treatments were performed in a 60 l airlift reactor, which was a prototype of larger commercial unit. All the treatments reduced TNT soil concentration below the required clean-up goal and in shorter time with respect to bench scale. Using 2% (w/w) Fe0, TNT soil concentration reduced below the required standard just within 4 h. No significant TNT destruction improvement was observed when 2% Fe0 (w/w soil) was combined with four sequential additions of 0.25% H2O2. Laboratory experiments with 14C-TNT indicated that most of the 14C, approximately 80%, was unextractable residue. A time greater than 24 h was required either with Fenton reagent, 8 x (80 mg Fe2+ L-1 + 0.125% H2O2) or 0.2% (w/w) CaO2. The optimal performance of Fenton reagent was obtained when the reagent was added in eight increments rather than in a single or double dose and less cumulative amount of H2O2 (0.75%) was required with respect to bench scale (1%).  相似文献   

16.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

17.
Seol Y  Javandel I 《Chemosphere》2008,72(4):537-542
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.  相似文献   

18.

The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v? 1) to treat 0.014 mM (5 mgL? 1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d? 1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg? 1) was incubated with 5% (wt v? 1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.  相似文献   

19.
A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE), during surfactant flushing. Batch experiments were performed to determine the equilibrium solubilization capacity of the surfactant, polyoxyethylene (20) sorbitan monooleate (Tween 80), and to measure fluid viscosity, density and interfacial tension. Results of one-dimensional column studies indicated that micellar solubilization of residual PCE was rate-limited at Darcy velocities ranging from 0.8 to 8.2 cm/h and during periods of flow interruption. Effluent concentration data were used to develop effective mass transfer coefficient (Ke) expressions that were dependent upon the Darcy velocity and duration of flow interruption. To simulate subsurface heterogeneity, 2-D boxes were packed with layers of F-70 Ottawa sand and Wurtsmith aquifer material within 20-30 mesh Ottawa sand. A 4% Tween 80 solution was then flushed through PCE-contaminated boxes at several flow velocities, with periods of flow interruption. Effluent concentration data and visual observations indicated that both rate-limited solubilization and pooling of PCE above the fine layers reduced PCE recovery to levels below those anticipated from batch and column measurements. These experimental results demonstrate the potential impact of both mass transfer limitations and subsurface layering on the recovery of PCE during surfactant enhanced aquifer remediation.  相似文献   

20.
Contamination of the subsurface by nonaqueous phase liquids (NAPLs) is a widespread problem. To investigate the behavior of a nonspreading, dense NAPL (DNAPL) in the vadose zone, we conducted perchloroethylene (PCE) infiltration experiments in nominally 1- and 2-dimensional (D), stratified porous media. In addition, the usefulness and limitations of a multifluid flow simulator to describe PCE infiltration and redistribution under the experimental conditions were tested. The physical simulations were conducted in a column (1-D) and a flow container (2-D) which were packed with two distinct layers of coarse-grained sand and a fine-grained sand layer in between. Volumetric water and PCE contents were determined with a fully automated dual-energy gamma radiation system. While migrating through the drier parts of the coarse-grained sand layers, PCE appeared to wet the water–air interface rather than displacing any water. In the wetter parts of the porous medium, PCE displaced water and behaved as a true nonwetting fluid. PCE showed a limited response to gradients in capillary pressure and rather high values for the volumetric PCE content were measured in the fine-grained sand layers. This was attributed to the nonspreading nature of PCE. The multifluid flow simulator appeared to predict the initial PCE movement in the vadose zone reasonably well. However, the model was not capable of predicting the final amounts of PCE retained in either the unsaturated or saturated part of the flow domain, mainly because the simulator does not consider the nonspreading flow behavior of NAPLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号