首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mooney KA 《Ecology》2007,88(8):2005-2014
Insectivorous birds and ants co-occur in most terrestrial communities, and theory predicts that emergent properties (i.e., nonadditive effects) can determine their combined influence on arthropods and plants. In a three-year factorial experiment, I investigated whether the effects of birds on pine and its arthropods differed based on the presence of ants that were predators of most arthropods, but mutualists with tended aphid species. Birds and ants reduced the abundance of most herbivorous and carnivorous arthropods in an additive fashion, with the effects of ants being stronger than those of birds. In sharp contrast, the opposing influences of birds and ants on tended aphid species interacted strongly; ants only increased tended aphid abundance in the absence of birds, while birds only reduced their abundance in the presence of ants. This interaction was mirrored in total herbivore abundance because tended aphids dominated the herbivore community. I develop a novel lexicon to discuss the emergent properties from these effects of opposing sign (predation, mutualism). Despite having emergent effects on herbivores, birds indirectly increased pine wood and foliage growth to a similar extent whether or not ants were present, while ants had no detectable effects. Birds also indirectly increased the abundance of some pine phloem monoterpenes, but these effects differed based on the presence or absence of ants. Thus, I report on a novel yet possibly widespread indirect interaction between intraguild predators, herbivore mutualists, and plant traits (growth, secondary chemistry) mediated through a species-rich community of arthropods.  相似文献   

2.
Smith RA  Mooney KA  Agrawal AA 《Ecology》2008,89(8):2187-2196
Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in preferentially suppressing competitively dominant A. nerii. Nonetheless, A. asclepiadis benefits from ants, and A. asclepiadis and M. asclepiadis may escape competitive exclusion by A. nerii on select milkweed genotypes. Taken as a whole, the coexistence of three host-specific aphid species sharing the same resource was promoted by the dual action of ants as antagonists and mutualists and by genetic diversity in the plant population itself.  相似文献   

3.
Genetic variation within and among key species can have significant ecological consequences at the population, community, and ecosystem levels. In order to understand ecological properties of systems based on habitat-forming clonal plants, it is crucial to clarify which traits vary among plant genotypes and how they influence ecological processes, and to assess their relative contribution to ecosystem functioning in comparison to other factors. Here we used a mesocosm experiment to examine the relative influence of genotypic identity and extreme levels of nitrogen loading on traits that affect ecological processes (at the population, community, and ecosystem levels) for Zostera marina, a widespread marine angiosperm that forms monospecific meadows throughout coastal areas in the Northern Hemisphere. We found effects of both genotype and nitrogen addition on many plant characteristics (e.g., aboveground and belowground biomass), and these were generally strong and similar in magnitude, whereas interactive effects were rare. Genotypes also strongly differed in susceptibility to herbivorous isopods, with isopod preference among genotypes generally matching their performance in terms of growth and survival. Chemical rather than structural differences among genotypes drove these differences in seagrass palatability. Nitrogen addition uniformly decreased plant palatability but did not greatly alter the relative preferences of herbivores among genotypes, indicating that genotype effects are strong. Our results highlight that differences in key traits among genotypes of habitat-forming species can have important consequences for the communities and ecosystems that depend on them and that such effects are not overwhelmed by known environmental stressors.  相似文献   

4.
Although soil microbial communities are known to play crucial roles in the cycling of nutrients in forest ecosystems and can vary by plant species, how microorganisms respond to the subtle gradients of plant genetic variation is just beginning to be appreciated. Using a model Populus system in a common garden with replicated clones of known genotypes, we evaluated microbial biomass and community composition as quantitative traits. Two main patterns emerged. (1) Plant genotype influenced microbial biomass nitrogen in soils under replicated genotypes of Populus angustifolia, F1, and backcross hybrids, but not P. fremontii. Genotype explained up to 78% of the variation in microbial biomass as indicated by broad-sense heritability estimates (i.e., clonal repeatability). A second estimate of microbial biomass (total phospholipid fatty acid) was more conservative and showed significant genotype effects in P. angustifolia and backcross hybrids. (2) Plant genotype significantly influenced microbial community composition, explaining up to 70% of the variation in community composition within P. angustifolia genotypes alone. These findings suggest that variation in above- and belowground traits of individual plant genotypes can alter soil microbial dynamics, and suggests that further investigations of the evolutionary implications of genetic feedbacks are warranted.  相似文献   

5.
Hoekman D 《Ecology》2010,91(10):2819-2825
Understanding how communities respond to changes in temperature is a major challenge for community ecology. Temperature influences the relative degree to which top-down and bottom-up forces structure ecological communities. In greenhouse experiments using the aquatic community found in pitcher plants (Sarracenia purpurea), I tested how temperature affected the relative importance of top-down (mosquito predation) and bottom-up (ant carcasses) forces on protozoa and bacteria populations. While bottom-up effects did not vary consistently with temperature, the top-down effects of predators on protozoa increased at higher temperatures. These results suggest that temperature could change the relative importance of top-down and bottom-up effects in ecological communities. Specifically, higher temperature may increase the strength of top-down effects by raising predator metabolic rate and concomitant processes (e.g., activity, foraging, digestion, growth) relative to cooler temperatures. These findings apply broadly to an understanding of trophic interactions in a variable environment and are especially relevant in the context of ongoing climate change.  相似文献   

6.
Lind EM  Barbosa P 《Ecology》2010,91(11):3274-3283
Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.  相似文献   

7.
Chamberlain SA  Holland JN 《Ecology》2008,89(5):1364-1374
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.  相似文献   

8.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   

9.
Ellers J  Rog S  Braam C  Berg MP 《Ecology》2011,92(8):1605-1615
Increases in biodiversity can result from an increase in species richness, as well as from a higher genetic diversity within species. Intraspecific genetic diversity, measured as the number of genotypes, can enhance plant primary productivity and have cascading effects at higher trophic levels, such as an increase in herbivore and predator richness. The positive effects of genotypic mixtures are not only determined by additive effects, but also by interactions among genotypes, such as facilitation or inhibition. However, so far there has been no effort to predict the extent of such effects. In this study, we address the question of whether the magnitude of the effect of genotype number on population performance can be explained by the extent of dissimilarity in key traits among genotypes in a mixture. We examine the relative contribution of genotype number and phenotypic dissimilarity among genotypes to population performance of the soil arthropod, Orchesella cincta. Nearly homogeneous genotypes were created from inbred isofemale lines. Phenotypic dissimilarity among genotypes was assessed in terms of three life-history traits that are associated with population growth rate, i.e., egg size, egg development time, and juvenile growth rate. A microcosm experiment with genotype mixtures consisting of one, two, four, and eight genotypes, showed that genotypic richness strongly increased population size and biomass production and was associated with greater net diversity effects. Most importantly, there was a positive log-linear relationship between phenotypic dissimilarity in a mixture and the net diversity effects for juvenile population size and total biomass. In other words, the degree of phenotypic dissimilarity among genotypes determined the magnitude of the genotypic richness effect, although this relationship leveled off at higher values of phenotypic dissimilarity. Although the exact mechanisms responsible for these effects are currently unknown, similar advantages of trait dissimilarity have been found among species. Hence, to better understand population performance, genotype number and phenotypic dissimilarity should be considered collectively.  相似文献   

10.
Shefferson RP  Roach DA 《Ecology》2012,93(4):793-802
The theory of evolution via natural selection predicts that the genetic composition of wild populations changes over time in response to the environment. Different genotypes should exhibit different demographic patterns, but genetic variation in demography is often impossible to separate from environmental variation. Here, we asked if genetic variation is important in determining demographic patterns. We answer this question using a long-term field experiment combined with general linear modeling of deterministic population growth rates (lambda), deterministic life table response experiment (LTRE) analysis, and stochastic simulation of demography by paternal lineage in a short-lived perennial plant, Plantago lanceolata, in which we replicated genotypes across four cohorts using a standard breeding design. General linear modeling showed that growth rate varied significantly with year, spatial block, and sire. In LTRE analysis of all cohorts, the strongest influences on growth rate were from year x spatial block, and cohort x year x spatial block interactions. In analysis of genetics vs. temporal environmental variation, the strongest impacts on growth rate were from year and year x sire. Finally, stochastic simulation suggested different genetic composition among cohorts after 100 years, and different population growth rates when genetic differences were accounted for than when they were not. We argue that genetic variation, genotype x environment interactions, natural selection, and cohort effects should be better integrated into population ecological studies, as these processes should result in deviations from projected deterministic and stochastic population parameters.  相似文献   

11.
de Valpine P  Rosenheim JA 《Ecology》2008,89(2):532-541
Robust analyses of noisy, stage-structured, irregularly spaced, field-scale data incorporating multiple sources of variability and nonlinear dynamics remain very limited, hindering understanding of how small-scale studies relate to large-scale population dynamics. We used a novel, complementary Bayesian and frequentist state-space model analysis to ask how density, temperature, plant nitrogen, and predators affect cotton aphid (Aphis gossypii) population dynamics in weekly data from 18 field-years and whether estimated effects are consistent with small-scale studies. We found clear roles of density and temperature but not of plant nitrogen or predators, for which Bayesian and frequentist evidence differed. However, overall predictability of field-scale dynamics remained low. This study demonstrates stage-structured state-space model analysis incorporating bottom-up, top-down, and density-dependent effects for within-season (nearly continuous time), nonlinear population dynamics. The analysis combines Bayesian posterior evidence with maximum-likelihood estimation and frequentist hypothesis testing using average one-step-ahead residuals.  相似文献   

12.
Rudolf VH 《Ecology》2007,88(12):2991-3003
Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.  相似文献   

13.
Nitrogen fertilization and winter pruning are commonly used to control crop production in peach [Prunus persica (L.) Batsch] orchards. They are also known to affect the dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) aphid populations via bottom-up regulation processes. Interactions between crops and pests can cause complex system behaviour in response to management practices. An integrated approach will therefore improve the understanding of the effects of these two cultural practices on aphid and peach performances.We developed a simulation model that describes the cultural control of interacting peach tree and aphid population dynamics. It uses the principles of common trophic models while gathering available knowledge and explicit assumptions on peach and aphid functioning and the effects of cultural practices.The model was able to qualitatively reproduce the system behaviour observed in the field. It accounted for actions and feedback such as stimulation of foliar growth by winter pruning, consecutive aphid population increase, subsequent damage to foliage, and partial compensatory growth of foliage. The model also reproduced low losses in fruit production due to aphid infestations. However, it called for further integration of ‘long-term’ effects. Analysis of the model showed the complexity of peach tree and aphid responses to leaf N × winter pruning interactions. Simulations indicated that fruit production losses remained low within a range of realistic values of leaf N and pruning intensity, whereas manipulating peach and aphid dynamics, their interactions and their relationships to practices could result in higher losses.The model is useful to evaluate the relevance of cultural practices for a bottom-up regulation of aphid dynamics in crop-pest management. After considering other control methods and fruit quality, it can be used to find a combination of practices that optimises trade-offs between fruit production and environmental conservation goals. A modelling approach that links crop growth and pest population dynamics and integrates management practice effects has strong potential for improving crop-pest management in an integrated crop production context.  相似文献   

14.
Galen C  Geib JC 《Ecology》2007,88(5):1202-1209
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.  相似文献   

15.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

16.
Mooney KA 《Ecology》2006,87(7):1805-1815
Predators affect herbivores directly and indirectly, by consumptive and nonconsumptive effects, and the combined influence of multiple predators is shaped by interactions among predators. I documented the individual and combined effects of birds (chickadees, nuthatches, warblers) and ants (Formica podzolica) on arthropods residing in pine (Pinus ponderosa) canopies in a factorial field experiment. Birds and ants removed herbivores but simultaneously benefited them by removing predatory arthropods. Birds and ants had net negative and positive effects, respectively, on the abundance of herbivore prey, supporting the notion that vertebrate predators have stronger negative effects on herbivores than do arthropod predators. Aphids (ant-tended and untended species) constituted three-quarters of herbivore biomass. The effect of birds on ant-tended aphids was twice that on untended aphid species or tended aphid species without ants. This was not due to there being more ant-tended aphids for birds to prey on; tended and untended aphid species were in similar abundances in the absence of birds. Instead, the effects of birds were strengthened by attributes of the mutualism that rendered tended aphids susceptible to predation. These dynamics led to nonadditive effects of birds and ants: birds only reduced tended aphid species and total herbivore abundances on trees with ants, while ants only increased tended aphid species and total herbivore abundances in the absence of birds. Consequently, top predators in this system only influenced total herbivore abundance when they disrupted an ant-aphid mutualism.  相似文献   

17.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

18.
Bottom-up regulation of plant community structure in an aridland ecosystem   总被引:2,自引:0,他引:2  
Báez S  Collins SL  Lightfoot D  Koontz TL 《Ecology》2006,87(11):2746-2754
We conducted a long-term rodent exclosure experiment in native grass- and shrub-dominated vegetation to evaluate the importance of top-down and bottom-up controls on plant community structure in a low-productivity aridland ecosystem. Using multiple regressions and analysis of covariance, we assessed how bottom-up precipitation pulses cascade through vegetation to affect rodent populations, how rodent populations affect plant community structure, and how rodents alter rates of plant community change over time. Our findings showed that bottom-up pulses cascade through the system, increasing the abundances of plants and rodents, and that rodents exerted no control on plant community structure and rate of change in grass-dominated vegetation, and only limited control in shrub-dominated vegetation. These results were discussed in the context of top-down effects on plant communities across broad gradients of primary productivity. We conclude that bottom-up regulation maintains this ecosystem in a state of low primary productivity that constrains the abundance of consumers such that they exert limited influence on plant community structure and dynamics.  相似文献   

19.
Non‐native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer‐reviewed literature to evaluate responses of arthropod communities and functional groups to non‐native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty‐two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web‐building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. Efectos de las Plantas Invasoras sobre los Artrópodos  相似文献   

20.
Inducible defenses are dynamic traits that modulate the strength of both plant-herbivore and herbivore-carnivore interactions. Surprisingly few studies have considered the relative contributions of induced plant and herbivore defenses to the overall balance of bottom-up and top-down control. Here we compare trophic cascade strengths using replicated two-level and three-level plankton communities in which we systematically varied the presence or absence of induced defenses at the plant and/or herbivore levels. Our results show that a trophic cascade, i.e., significantly higher plant biomass in three-level than in two-level food chains, occurred whenever herbivores were undefended against carnivores. Trophic cascades did not occur when herbivores exhibited an induced defense. This pattern was obtained irrespective of the presence or absence of induced defenses at the plant level. We thus found that herbivore defenses, not plant defenses, had an overriding effect on cascade strength. We discuss these results in relation to variation in cascade strengths in natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号