首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The use of continuous time, distributed parameter hydrologic models like SWAT (Soil and Water Assessment Tool) has opened several opportunities to improve watershed modeling accuracy. However, it has also placed a heavy burden on users with respect to the amount of work involved in parameterizing the watershed in general and in adequately representing the spatial variability of the watershed in particular. Recent developments in Geographical Information Systems (GIS) have alleviated some of the difficulties associated with managing spatial data. However, the user must still choose among various parameterization approaches that are available within the model. This paper describes the important parameterization issues involved when modeling watershed hydrology for runoff prediction using SWAT with emphasis on how to improve model performance without resorting to tedious and arbitrary parameter by parameter calibration. Synthetic and actual watersheds in Indiana and Mississippi were used to illustrate the sensitivity of runoff prediction to spatial variability, watershed decomposition, and spatial and temporal adjustment of curve numbers and return flow contribution. SWAT was also used to predict stream runoff from actual watersheds in Indiana that have extensive subsurface drainage. The results of this study provide useful information for improving SWAT performance in terms of stream runoff prediction in a manner that is particularly useful for modeling ungaged watersheds wherein observed data for calibration is not available.  相似文献   

2.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

3.
Abstract: The spatial variability of the data used in models includes the spatial discretization of the system into subsystems, the data resolution, and the spatial distribution of hydrologic features and parameters. In this study, we investigate the effect of the spatial distribution of land use, soil type, and precipitation on the simulated flows at the outlet of “small watersheds” (i.e., watersheds with times of concentration shorter than the model computational time step). The Soil and Water Assessment Tool model was used to estimate runoff and hydrographs. Different representations of the spatial data resulted in comparable model performances and even the use of uniform land use and soil type maps, instead of spatially distributed, was not noticeable. It was found that, although spatially distributed data help understand the characteristics of the watershed and provide valuable information to distributed hydrologic models, when the watershed is small, realistic representations of the spatial data do not necessarily improve the model performance. The results obtained from this study provide insights on the relevance of taking into account the spatial distribution of land use, soil type, and precipitation when modeling small watersheds.  相似文献   

4.
Modeling the relationship between land use and surface water quality   总被引:64,自引:0,他引:64  
It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic effects of land use is very useful. It can provide guidelines not only for resource managers in restoring our aquatic ecosystems, but also for local planners in devising viable and ecologically-sound watershed development plans, as well as for policy makers in evaluating alternate land management decisions.  相似文献   

5.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

6.
ABSTRACT: An assessment of physical conditions in urban streams of the Puget Sound region, coupled with spatially explicit watershed characterizations, demonstrates the importance of spatial scale, drainage network connectivity, and longitudinal downstream trends when considering the effects of urbanization on streams. A rapid stream assessment technique and a multimetric index were used to describe the physical conditions of multiple reaches in four watersheds. Watersheds were characterized using geographic information system (GIS) derived landscape metrics that represent the magnitude of urbanization at three spatial scales and the connectivity of urban land. Physical conditions, as measured by the physical stream conditions index (PSCI), were best explained for the watersheds by two landscape metrics: quantity of intense and grassy urban land in the subwatershed and quantity of intense and grassy urban land within 500 m of the site (R2= 0.52, p > 0.0005). A multiple regression of PSCI with these metrics and an additional connectivity metric (proximity of a road crossing) provided the best model for the three urban watersheds (R2= 0.41, p > 0.0005). Analyses of longitudinal trends in PSCI within the three urban watersheds showed that conditions improved when a stream flowed through an intact riparian buffer with forest or wetland vegetation and without road crossings. Results demonstrate that information on spatial scale and patterns of urbanization is essential to understanding and successfully managing urban streams.  相似文献   

7.
Watershed-wide land-cover proportions can be used to predict the in-stream non–point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.  相似文献   

8.
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.  相似文献   

9.
ABSTRACT: Distributed hydrologic models which link seasonal streamflow and soil moisture patterns with spatial patterns of vegetation are important tools for understanding the sensitivity of Mediterranean type ecosystems to future climate and land use change. RHESSys (Regional Hydro‐Ecologic Simulation System) is a coupled spatially distributed hydroecological model that is designed to be able to represent these feedbacks between hydrologic and vegetation carbon and nutrient cycling processes. However, RHESSys has not previously been applied to semiarid shrubland watersheds. In this study, the hydrologic submodel of RHESSys is evaluated by comparing model predictions of monthly and annual streamflow to stream gage data and by comparing RHESSys behavior to that of another hydrologic model of similar complexity, MIKESHE, for a 34 km2 watershed near Santa Barbara, California. In model intercomparison, the differences in predictions of temporal patterns in streamflow, sensitivity of model predictions to calibration parameters and landscape representation, and differences in model estimates of soil moisture patterns are explored. Results from this study show that both models adequately predict seasonal patterns of streamflow response relative to observed data, but differ significantly in terms of estimates of soil moisture patterns and sensitivity of those patterns to the scale of landscape tessellation used to derive spatially distributed elements. This sensitivity has implications for implementing RHESSys as a tool to investigate interactions between hydrology and ecosystem processes.  相似文献   

10.
Differences between scientist and policy-maker response types and times, or the “how” and “when” of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.  相似文献   

11.
Effects of changing patterns of forest and impervious land covers on hydrologic regimes of watersheds were evaluated for urban and rural areas of the lower Cedar River drainage near Seattle, Washington. Land cover characterizations were used in a spatially explicit hydrology model to assess effects of land covers on watershed hydrology during presettlement conditions (full forest cover), 1991 and 1998. For the presettlement to 1991 period, urban watersheds showed decreases in forest covers (range 63% to 83%) and increases in impervious surfaces (range 43% to 71%). Rural watersheds showed similar patterns but smaller changes, with forest covers decreasing (range 28% to 34%) and impervious surfaces increasing (range 8% to 15%). For the 1991 and 1998 period, changes in forest covers for urban and rural watershed were <24%, with losses in some watersheds and regeneration in others. Impervious surfaces continued to increase, but increases were larger in rural (range 38% to 60%) than in urban watersheds (range 4% to 27%). Flood-frequency curves indicated that discharge rates (m sec–1) for all watersheds were higher in 1991 and 1998 than historical and suggested that chances for floods increase because of changing land covers. The largest increases in discharge rates were in urban watersheds, with rates for 2-year, 10-year, and 25-year recurrence intervals being more than two times greater than the rate during historical conditions. Changes in flow regimes were indicated by presettlement discharge levels of less frequent recurrence intervals (10-year and 25-year) occurring in posturbanization times (1991 and 1998) during more frequent intervals (2-year and 10-year). Normalized flows (m yr–1) of watersheds for 2-year, 10-year, and 25-year recurrence intervals indicate how flow regimes in 1991 and 1998 can change as functions of different areas of land covers. During 1991 and 1998, abrupt increases in flows occurred when forest covers were low (range 17% to 37%) and impervious surfaces were >46%. In contrast, the lowest flows occurred when forest covers were most extensive (range 59% to 81%) and impervious surfaces were <23%. We conclude that our use of spatial characterizations of impervious surfaces and forested covers in a spatially explicit hydrology model provides a robust approach for revealing how variations in different types and spatial distributions of land covers can affect flood regimes and flows of different watersheds.  相似文献   

12.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

13.
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influence wetland ecosystems. The construction of levees can reduce river–floodplain connectivity, yet it is unclear how levees affect wetlands within floodplains, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash Basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete subbasins. Our results show that cumulative wetland area is relatively constant in subbasins that contain levees, regardless of maximum stream order within the subbasin. In subbasins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to consider finer resolution spatial scales.  相似文献   

14.
Differences between scientist and policy-maker response types and times, or the “how” and “when” of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.  相似文献   

15.
ABSTRACT: A controlled burn at Bandelier National Monument got out of control and burned about 43,000 acres (17,400 hectares) near Los Alamos, New Mexico, in May 2000. The wildfire caused dramatic changes in infiltration capacity and wettability of soils in many of the watersheds above Los Alamos National Laboratory (LANL) and destroyed the duff layer, dramatically reducing the interception and infiltration capacity of the formerly forested watersheds. These sudden changes in basin hydrology necessitated a rapid assessment of hydrology and hydraulics for the canyons running through LANL property to evaluate flood risk, plan emergency flood protection measures, and assess potential sediment and actinide transport. This paper presents the results of hydrologic and hydraulic modeling of Los Alamos Canyon following the wildfire. The large scale modeling effort, with over 13,000 cross sections for the hydraulic model (5,000 for Los Alamos Canyon, 8,000 for Guaje Canyon), relied heavily on a geographic information system (GIS) for model input and floodplain delineation. The HEC‐geoRAS model provided good integration between the hydraulic model (HEC‐RAS, Version 3.0.1) and the GIS (ArcView, v. 3.3). These modeling results are being used in drainage master planning efforts at LANL and in the development of sediment transport models using HEC‐6T. Sediment transport modeling results will be used to develop actinide transport models for the canyons at LANL.  相似文献   

16.
Agricultural non-point source (NPS) pollution, primarily sediment and nutrients, is the leading source of water-quality impacts to surface waters in North America. The overall goal of this study was to develop geographic information system (GIS) protocols to facilitate the spatial and temporal modeling of changes in soils, hydrology, and land-cover change at the watershed scale. In the first part of this article, we describe the use of GIS to spatially integrate watershed scale data on soil erodibility, land use, and runoff for the assessment of potential source areas within an intensively agricultural watershed. The agricultural non-point source pollution (AGNPS) model was used in the Muddy Creek, Ontario, watershed to evaluate the effectiveness of management strategies in decreasing sediment and nutrient [phosphorus (P)] pollution. This analysis was accompanied by the measurement of water-quality parameters (dissolved oxygen, pH, hardness, alkalinity, and turbidity) as well as sediment and P loadings to the creek. Practices aimed at increasing year-round soil cover would be most effective in decreasing sediment and P losses in this watershed. In the second part of this article, we describe a method for characterizing land-cover change in a dynamic urban fringe watershed. The GIS method we developed for the Blackberry Creek, Illinois, watershed will allow us to better account for temporal changes in land use, specifically corn and soybean cover, on an annual basis and to improve on the modeling of watershed processes shown for the Muddy Creek watershed. Our model can be used at different levels of planning with minimal data preprocessing, easily accessible data, and adjustable output scales.  相似文献   

17.
ABSTRACT: Many coastal states are facing increasing urban growth along their coast lines. The growth has caused urban non-point source nitrogen runoff to be a major contributor to coastal and estuarine enrichment. Water resource managers are responsible for evaluating the impacts from point and non-point sources in developed watersheds and developing strategies to manage future growth. Non-point source models provide an effective approach to these management challenges. The Agricultural Non-Point Source Model (AGNPS) permits the incorporation of important spatial information (soils, landuse, topography, hydrology) in simulating surface hydrology and nitrogen non-point source runoff. The AGNPS model was adapted for developed coastal watersheds by deriving urban coefficients that reflect urban landuse classes and the amount of impervious surface area. Popperdam Creek watershed was used for model parameter development and model calibration. Four additional watersheds were simulated to validate the model. The model predictions of the peak flow and total nitrogen concentrations were close to the field measurements for the five sub-basins simulated. Measured peak flow varied by 30 fold among the sub-basins. The average simulated peak flow was within 14 percent of the average measured peak flow. Measured total nitrogen loads varied over an order of magnitude among the sub-basins yet error between the measured and simulated loads for a given sub-basin averaged 5 percent. The AGNPS model provided better estimates of nitrogen loads than widely used regression methods. The spatial distribution of important watershed characteristics influenced the impacts of urban landuse and projecting future residential expansion on runoff, sediment and nitrogen yields. The AGNPS model provides a useful tool to incorporate these characteristics, evaluate their importance, and evaluate fieldscale to watershed-scale urban impacts.  相似文献   

18.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

19.
Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.  相似文献   

20.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号