首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the lipid dynamics (lipid contents, classes and fatty acids) during oogenesis and early embryogenesis of 7 viviparous and 3 oviparous deepwater chondrichthyans. Mature pre-ovulated ovarian follicles of all species were high in lipid content, indicative of large energetic expenditure and high maternal investment. Larger lipid reserves were found in viviparous dogshark (28–36% wet weight, ww) compared to oviparous chimaeras (19–24% ww) and catshark, F. boardmani (18% ww). Neutral lipids and monounsaturated fatty acids were the main source of lipidic energy during vitellogenesis and gestation. For most species, there was a peak in total lipid content, levels of storage lipids and essential fatty acids at time of ovulation. Interspecific variation of total lipid yolk reserves and lipid class profiles was largely explained by differences in parity mode, reproductive (continuous vs. non-continuous oocytes development) strategy and depth-related physiological adaptations. Fatty acid profiles were less variable among species with the most important fatty acids including: 16:0, 18:1ω9, 20:1ω9, 20:4ω6 and 22:6ω3. These findings provide a greater biochemical understanding of different maternal-embryonic relationships among chondrichthyans, which can be used as a baseline for subsequent comparative studies.  相似文献   

2.
 The relationship between intermoult duration (coloration), sex, size and seasonal variations in fatty acid (FA) profiles was studied in a population of shore crabs, Carcinus maenas, inhabiting the Isefjord, Denmark. For male shore crabs, the total hepatopancreas FA content was high in July and December (12.7 to 16.0 mg g−1 dry weight, dw) but lower in May and September (7.3 to 10.0 mg g−1). This indicates that male shore crabs are in relatively good condition before winter, when the crabs migrate off shore, but in relatively poor condition when they return to shallow waters during spring. The hepatopancreas FA content also decreased over the mating season. After the mating season the hepatopancreas FA content of males had decreased to approximately 60% of that prior to the mating season. Female shore crabs had significantly higher hepatopancreas FA levels than males in May (11.7 mg g−1 dw), September (12.6 mg g−1 dw) and December (17.9 mg g−1 dw) but lower levels in July (9.5 mg g−1 dw). This indicates that the spawning season is the most energy-demanding part of the female reproductive cycle. For all seasons, the hepatopancreas FA content of green shore crabs was significantly higher than that of red shore crabs. For both colour forms, the amount of polyunsaturated fatty acids (PUFAs) was significantly higher than that of saturated fatty acids (SAFAs) and monounsaturated fatty acids (MUFAs), with the relative proportion of PUFAs increasing when the total hepatopancreas FA content decreased. For both genders and colour forms, the most dominating SAFA was palmitic acid (16:0). Palmitoleic acid (16:1ω7), vaccenic acid (18:1ω7) and oleic acid (18:1ω9) were the three MUFAs found in highest concentrations. The most dominating PUFA was eicosapentaenoic acid (EPA, 20:5ω3). Docosahexaenoic acid (DHA, 22:6ω3) and arachidonic acid (AA, 20:4ω6) were also abundant in all samples. The results demonstrated that season, sex, size and intermoult duration all influence the amount of FAs present in the hepatopancreas of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

3.
The validity of some morphological gyrocotylid species, exclusive gut parasites of ratfishes (Holocephali), is contested. Non-morphological characters, such as fatty acid profiles, may be used to resolve taxonomic problems. FiveGyrocotyle species were studied: three inChimaera monstrosa collected between 1985 and 1987 from the north-east Atlantic (on the Norwegian coast); and two inHydrolagus colliei, collected in 1987 from the north-east Pacific (in Nanaimo, British Columbia, Canada). Their fatty acids were obtained by methanolytic extraction of worm tissue samples, followed by gas chromatography of the fatty acid methyl esters, and finally multivariate data treatment (principal component analysis) of gas chromatographic results. Complete separation of the five species was obtained; classification agrees well with that arrived at by morpholog and enzyme electrophoresis.  相似文献   

4.
 The effects of cadmium exposure and dietary status on cadmium accumulation, fatty acid (FA) content and profiles were investigated in two colour forms of the shore crab Carcinus maenas. Groups of shore crabs were either starved or fed with blue mussels, Mytilus edulis, during a 40 d exposure period to 2 or 6 μM Cd2+ (as CdCl2). Starved green individuals accumulated more cadmium in haemolymph and hepatopancreas than did red crabs and green crabs fed during the experiments. In the red colour form, no difference in cadmium accumulation was observed between starved and fed individuals. In both colour forms, hepatopancreas contained more FA than gills and muscle. The FAs often present in the largest amounts in the tissues were 16:0, 16:1ω7, 18:1ω7, 18:1ω9, 20:4ω6, 20:5ω3 and 22:6ω3. However, saturated (SAFA) and mono-unsaturated fatty acids (MUFAs) were dominant in hepatopancreas, whereas poly-unsaturated fatty acids (PUFAs) were dominant in gills and muscles. At the beginning of the experiment, the total FA content in the hepatopancreas was 111.6 mg g−1 (dry weight) for red crabs and 78.4 mg g−1 for green shore crabs. During the experiment, however, the FA content decreased in red crabs. This decrease was more pronounced for starved individuals than for fed individuals. Also, the decrease in FA content was more pronounced in crabs exposed to 6 μM cadmium compared to crabs exposed to 2 μM or crabs not exposed to cadmium. No change in FA content was observed in green shore crabs, irrespective of diet and cadmium exposure. For both colour forms, no change in FA content was observed for gills and muscle. In red crabs, a decrease was observed for all FAs in the hepatopancreas. This decrease, however, was more pronounced for SAFAs and MUFAs than for PUFAs, indicating that the metabolism of FAs during starvation and cadmium exposure is selective. The experiments indicate that green colour forms of shore crabs are more tolerant of natural stress such as starvation and anthropogenic stress, e.g. cadmium exposure, than are red colour forms of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

5.
The influence of the crab Parasesarma erythrodactyla on the entry of the organic matter derived from Avicennia marina mangrove leaves in a sub-tropical mangrove ecosystem of southeast Queensland, Australia, was simulated using tidal mesocosms. Degradation of mangrove leaf organic matter was followed by analysing the fatty acid composition, carbon, and nitrogen isotopic signatures of the surface sediment and suspended particulate organic matter (SPOM) with and without the presence of crabs. Assimilation of mangrove organic matter by P. erythrodactyla was also assessed by stable isotope and fatty acid analyses in tissues and faeces. Results of the chemical tracer analyses question the adaptability of P. erythrodactyla to a diet comprised exclusively of mangrove leaves, and suggest that these organisms were dependent on additional food sources in their natural environment. Crab processing of senescent leaves significantly accelerated the transfer of mangrove organic matter to the surface sediments, as shown by a higher C/N ratio, a higher contribution of long-chain fatty acids and a more depleted C isotopic signature of sediment samples in the mesocosms with crabs compared to those without crabs.  相似文献   

6.
Fatty acid analysis is an alternative dietary investigation tool that complements the more traditional techniques of stomach content and faecal analysis that are often subject to a wide range of biases. In applying fatty acid analysis to ecosystem studies, it is important to have an understanding of the effect diet has on the fatty acid profile of the predator. A feeding experiment, using crustacean and fish as prey for the European cuttlefish Sepia officinalis, was conducted to evaluate the effect of prey fatty acids on the fatty acid profile of this marine predator. Cuttlefish were fed on a fish diet for the first 29 days, and then changed to a crustacean diet for a further 28 days. Another group of cuttlefish was fed on a crustacean diet for the first 29 days, and then changed to a fish diet for a further 28 days. An analysis of the cuttlefish digestive gland showed that the fatty acid profile reflected that of the prey, with cuttlefish on a crustacean diet being clearly distinguishable from the cuttlefish on a fish diet. Cuttlefish fed on a fish diet for 29 days prior to the switch in diet were comparatively higher in 16:0, AA, 20:1ω9, DPA6, DHA, 22:4ω6 and DPA3 than those fed on crustaceans. Cuttlefish fed on a crustacean diet for 29 days prior to the switch in diet were comparatively higher in 17:1ω8, 18:1ω9, 18:2ω6, 18:1ω7, EPA and 20:2ω6 than those fed on fish. Following a change in diet, the fatty acid profile of the cuttlefish digestive gland reflected that of the new diet within 14 days. The results confirm that the fatty acid profile of the cuttlefish digestive gland clearly reflects the profile of its recent diet. It also shows that the digestive gland may not be an organ that accumulates dietary lipids for long-term storage, but rather is an organ where lipids are rapidly being turned over and potentially excreted.  相似文献   

7.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

8.
To better understand the feeding and reproductive ecology of euphausiids (krill) in different ocean environments, lipid classes and individual lipid components of four different species of euphausiids from Northeast Pacific (temperate species) and Southern Ocean (Antarctic species) were analyzed in animals from multiple life stages and seasons. The dominant krill species in the Northeast Pacific Euphausia pacifica and Thysanoessa spinifera, were compared to the two major Antarctic species, Euphausia superba and E. crystallorophias. Analysis comprised total lipid and lipid classes together with individual fatty acid and sterol composition in adults, juveniles, and larvae. Antarctic krill had much higher lipid content than their temperate relatives (10–50 and 5–20% of dry mass for Antarctic and temperate species, respectively) with significant seasonal variations observed. Phospholipids were the dominant lipid class in both temperate krill species, while neutral storage lipids (wax esters and triacylglycerols for E. crystallorophias and E. superba, respectively) were the major lipid class in Antarctic krill and accounted for up to 40% of the total lipid content. Important fatty acids, specifically 16:0, 18:1ω9, 20:5ω3, and 22:6ω3, were detected in all four krill species, with minor differences between species and seasons. Detailed lipid profiles suggest that krill alter their lipid composition with life stage and season. In particular, larval Antarctic krill appear to utilize alternate food resources (i.e., sea-ice associated organisms) during austral winter in contrast to juveniles and adults (i.e., seston and copepods). Lipid dynamics in krill among krill in both systems appear closely linked to their life cycle and environmental conditions including food availability, and can provide a more complete comparative ecology of euphausiids in these environmentally distinct systems.  相似文献   

9.
Y. Fukuda  T. Naganuma 《Marine Biology》2001,138(5):1029-1035
Fatty acid composition of the natural and aquarium-reared common jellyfish Aurelia aurita was investigated. Fatty acid composition of the aquarium-reared A. aurita clearly reflected that of the diet, brine shrimp (Artemia). In the same way, fatty acid composition of the natural A. aurita was assumed to reflect those of natural diets. Samples of natural A. aurita were collected from April 1995 to September 1995 in the Seto Inland Sea, Japan, and their fatty acids were analyzed by gas chromatography and mass spectrometry. Variation of fatty acid compositions was seasonal rather than dependent on body size. Two major seasonal groups were divided by the cluster analysis of the A. aurita fatty acid composition: the April–June and the August–September clusters. The April–June cluster was characterized by high contents of the (n − 3)-fatty acids of diatom origin, accumulated via the grazing food chain. By contrast, the August–September cluster was characterized by an increase in (n − 6)-fatty acids of macroalgal origin, probably transferred via the detritus food chain. These results suggest that the diet of natural A. aurita may shift between the diatom-based food chain and the detritus-based food chain. Received: 12 April 2000 / Accepted: 1 December 2000  相似文献   

10.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

11.
Nylon bags containing yellow leaves of Rhizophora apiculata and Avicennia marina, were immersed for 80 days from August to October, 1996. the decomposing leaves were collected every 10 days and analysed for dry weight loss and six biochemical parameters: tannins, total amino acids, total sugars, total nitrogen, total lipids and fatty acid profile. the leaf weight initially decreased very rapidly by about 50% of the start in two species of mangroves within 10 days. Similar changes were observed with tannins, total amino acids and sugars. However, the concentration of nitrogen increased significantly with decomposition. There was no significant change in total lipid and fatty acid profile. the highest concentration of fatty acid in the decomposing leaves was palmitic acid (16:0). Unsaturated fatty acids such as, 18:1 w7c and 18:1 w9c were found to be present in decomposing leaves of both species.  相似文献   

12.
Some organisms living in coastal bays in Newfoundland and Labrador have to contend with sub-zero temperatures for most of the year. The goal of this study was to examine the lipid composition of the food web in such an environment in order to obtain information on essential nutrients and trophic relations. In August 2000, plankton, 16 species of macroinvertebrates, and sediments were collected in a shallow, sheltered bay, Gilbert Bay, southern Labrador (52°35N; 55°50W). Plankton had higher proportions of 3 fatty acids (39±5%) and lower proportions of bacterial fatty acids (5±2%), while sediments had 12±5% 3 fatty acids and 15±9% bacterial fatty acids. Plankton 3 fatty acids levels and sediment bacterial fatty acid levels were higher than in equivalent samples previously collected further south, in Newfoundland. Benthic macroinvertebrates contained 0.5±0.4% of their wet weight as lipid, of which 45±15% was triacylglycerol. Levels of 3 fatty acids were high and relatively constant across phyla, accounting for 36±11% of the total fatty acids. Compared to other invertebrates, echinoderms had a unique fatty acid composition, which was characterized by high levels of 20:4-6 (9±6%), bacterial fatty acids (8±4%), and 20:1+22:1 monoenoic fatty acids (13±6%). Baseline lipid data from plankton and macroinvertebrates showed constantly high levels of polyunsaturated fatty acids, indicating their physiological importance at low temperatures.Communicated by J.P. Grassle, New Brunswick  相似文献   

13.
Nylon bags containing yellow leaves of Rhizophora apiculata and Avicennia marina, were immersed for 80 days from August to October, 1996. the decomposing leaves were collected every 10 days and analysed for dry weight loss and six biochemical parameters: tannins, total amino acids, total sugars, total nitrogen, total lipids and fatty acid profile. the leaf weight initially decreased very rapidly by about 50% of the start in two species of mangroves within 10 days. Similar changes were observed with tannins, total amino acids and sugars. However, the concentration of nitrogen increased significantly with decomposition. There was no significant change in total lipid and fatty acid profile. the highest concentration of fatty acid in the decomposing leaves was palmitic acid (16:0). Unsaturated fatty acids such as, 18:1 w7c and 18:1 w9c were found to be present in decomposing leaves of both species.  相似文献   

14.
The composition of lipids and fatty acids was determined for the livers, muscle, pancreas, kidney and stomach fluids of deepwater chondrichthyan species (including 11 squaliformes, 3 chimaeriformes, 1 hexanchiforme and 3 carcharhiniformes) caught as bycatch from continental waters off south-eastern Australia. The lipid class, fatty acid and fatty alcohol composition differed markedly in each tissue and in each species. The lipid and fatty acid composition of large, lipid-rich (38–70% wet weight, ww) livers demonstrated the multifunctional role of this organ in: lipid distribution, storage and biosynthesis, and buoyancy regulation. In the liver, the importance of certain lipids (including squalene, diacylglyceryl ethers, triacylglycerols and to a lesser extent wax esters) as mediators of buoyancy varied according to lifestyle and habitat. Less variability was observed in the muscle profiles, characterized by low lipid content (<1.0% ww) and high relative levels of polar lipids (>70%). The lipid and fatty acid profiles of the kidney and pancreas showed the highest intraspecific variability, suggesting these organs also have complex roles in lipid storage and metabolism. Overall intra- and interspecific differences in the tissue fatty acid profiles could be related to differences in a number of factors including phylogeny, habitat (depth), buoyancy regulation and diet and presumably also reflect different ecological roles. The lipid and fatty acid profiles are the first published for Rhinochimaera pacifica, Chimaera lignaria and Figaro boardmani and the first to demonstrate interspecific variation in lipid profiles of various tissues of deepwater chondrichthyans. The application of multivariate analysis to lipid class and fatty acid tissue profiles in chondrichthyans inferred dietary differences and metabolic preferences between species and habitats. These results have important implications for the future use of fatty acids as dietary tracers in chondrichthyan research.  相似文献   

15.
This study represents the first determination of lipids and fatty acids in fish scales. Scales collected from groups of Atlantic salmon reared on fish farms and in experimental tanks were analyzed by chromatography. The complete suite of fatty acids normally found in marine organisms was detected in the scales, with the following fatty acids dominating: 16:0, 18:0, 18:1n9, 20:5n3, 22:6n3 and 24:1n9. Scales contained relatively high levels of furan fatty acids, and the level of cholesterol (2.5–5 mg/g tissue) was much higher than the levels found in the edible parts of marine fishes (0.2–1 mg/g tissue). The fatty acid profile of scales was distinct between groups of salmon originating from different commercial strains reared on the same farm, between salmon groups originating from the same strains but reared at different farms, and between groups of fed and unfed salmon in experimental tanks. Together, these data indicate that the fatty acid composition of fish scales is dependent upon both environmental and genetic factors. The fatty acid composition of fish scales may be used in stock/population identification, for example identification of escaped Atlantic salmon to farm of origin.  相似文献   

16.
The fatty acids of 3 samples of Euphausia superba, 7 samples of E. crystallorophias, and 12 samples of phytoplankton collected in the Ross Sea, Antarctica, during Eltanin Cruise 51 were examined. The fatty acid profiles of the samples of E. superba resembled each other closely. The fatty acid profiles of the E. crystallorophias samples were also similar to each other but different quantitatively from those of E. superba. Phytoplankton fatty acid patterns varied with the geographical location and species composition of the samples. The fatty acids of euphausiids were compared to those of the phytoplankton from the corresponding locations. Rather similar fatty acid patterns in phytoplankton and E. superba corroborate the herbivorous nature of this euphausiid. On the other hand, phytoplankton and E. crystallorophias showed quite different fatty acid patterns. The differences were mostly due to the presence of waxes among the lipids of E. crystallorophias. It is not clear whether these waxes are of dietary origin or are synthesized endogenously.  相似文献   

17.
The effect of feeding the flagellate Isochrysis galbana (Parke; clone T-Iso) of modified lipid composition on the growth and lipid composition of juvenile scallops [Placopecten magellanicus (Gmelin)] was investigated in the spring of 1993. I. galbana grown in 85-liter cage culture turbidostats under conditions of nitrogen limitation had a significantly higher total lipid content than when grown under nutrient-replete conditions. This was due mainly to a doubling in the amount of less unsaturated triacylglycerol in the cells. The concentrations of methyl and ethyl ketones were also greater in nitrogen-limited cells. Diets of nitrogen-limited I. galbana and nutrient-replete I. galbana grown in continuous and semi-continuous cultures were compared. Scallop juveniles were batch fed daily, and measurements of ingestion were determined. Samples of juveniles were removed periodically for determination of organic weight. The juveniles did not grow when fed nitrogen-limited or nutrient-replete I. galbana alone; however, when each diet was supplemented with 20% of the diatom Chaetoceros muelleri (Lemm.), there was a significant increase in growth in the juveniles receiving the nitrogen-limited I. galbana compared with juveniles on other diets. In comparison with I. galbana,  C. muelleri provided a rich source of carbohydrates and the essential fatty acid 20:4ω6. This study shows the importance of providing optimal dietary levels of ω3 and ω6 polyunsaturated fatty acids, as well as less unsaturated fatty acids and carbohydrates. Received: 29 September 1997 / Accepted: 2 October 1998  相似文献   

18.
The invasive caprellid amphipod Caprella mutica is one of the most widely dispersed marine non-native species globally. Originating in sub-boreal north-east Asia, it has now been found in both the northern and the southern hemispheres. One potential reason why this species is such a successful invader is its ability to utilise a wide variety of food sources. The contribution of different food sources to the diet of C. mutica was estimated using fatty acids as biomarkers. Caprella mutica was collected from three field sites, including sea cages stocked with Atlantic salmon Salmo salar, shellfish longlines stocked with the blue mussel Mytilus edulis and mooring lines marking the Loch Linnhe Artificial Reef (>2 km from caged finfish aquaculture), where established populations of this species are known to occur. In addition, the fatty acid compositions of C. mutica held in aquaria and either fed the microalga, Dunaliella tertiolecta, or the diatom, Phaeodactylum tricornutum, for a period of 21 days were investigated. The fatty acid composition of the diatom and the microalgal diets was also examined. The results showed that C. mutica contained high levels of polyunsaturated fatty acids, particularly 20:5(n-3); other dominant fatty acids included 18:1(n-9), 22:6(n-3) and 16:0 (in decreasing order based on abundance). Significant differences in the fatty acid profiles between caprellids fed on the microalgae and the diatom diets and between C. mutica collected from the field sites were observed. These results provide evidence that lipid biomarkers can be successfully used to provide evidence of feeding strategy for C. mutica and that the flexibility observed in this strategy may play an important role in its invasion success.  相似文献   

19.
Four species of microalgae (Chaetoceros muelleri, Tetraselmis suecica, Tahitian Isochrysis sp. (T-iso) and Dunaliella tertiolecta) with distinctly different fatty acid profiles were grown in continuous culture and fed to prawn larvae (Penaeus japonicus, P. semisulcatus and P. monodon) as monospecific diets. The best two diets (C. muelleri and T. suecica) were also fed as a mixed diet. Experiments were run until the larvae fed the control diet of C. muelleri metamorphosed to Mysis 1. The survival and development (i.e. performance) of the larvae were affected by algal diet, and the diets were ranked in the order of decreasing nutritional value: C. muelleri ≥ T. suecica > T-iso > D. tertiolecta. Larvae fed a mixed diet of C. muelleri and T. suecica (2:3 by dry weight) performed as well or better than those fed C. muelleri, and the performance of both these groups of larvae was better than those fed T. suecica. The lipid and carbohydrate compositions of the algae had little or no effect on the lipid and carbohydrate compositions of the larvae or their performance. However, the larvae that performed best (i.e. those fed C. muelleri) had significantly more lipid and carbohydrate than those that performed worst (i.e. those fed D. tertiolecta). Larvae fed C. muelleri or the mixed-algae diet had higher proportions of the essential fatty acids eicosapentaenoic acid [EPA, 20:5(n-3)] and arachidonic acid [ARA, 20:4(n-6)] than the larvae fed on other diets. Furthermore, the larvae fed T. suecica, which showed intermediate performance between larvae fed C. muelleri and T-iso or D. tertiolecta, also had higher proportions of EPA and ARA. Both C. muelleri and T. suecica contained EPA and ARA, but T-iso and D. tertiolecta did not, except for trace amounts of EPA in T-iso. The fatty acid ARA appears to be much more important in the diet of larval prawns than has so far been considered. The level of the essential fatty acid docosahexaenoic acid [DHA, 22:6(n-3)] in the algal diet and the larvae was not related to the performance of the larvae; only C. muelleri and T-iso contained DHA. However, the nauplii contained large proportions of DHA, suggesting that these were sufficient to meet the larval requirements for DHA during their development to Mysis 1. Mixed-algae diets could improve the performance of larvae by providing a more comprehensive range of fatty acids. Received: 22 April 1998 / Accepted: 3 December 1998  相似文献   

20.
P. R. Pugh 《Marine Biology》1971,11(2):118-124
The fatty acid composition of the diatom Coscinodiscus eccentricus Ehrenberg, has been examined at six stages in the growth cycle for cells maintained in four different salinity media (20, 25, 30 and 35%) using gas-liquid chromatography. The predominant acids were those containing 16 carbon atoms (45 to 76% of the total); the higher percentages were found at the later growth stages. Several growth/salinity changes in the individual fatty acid compositions are described, and attention is drawn to the changes in the ratio of the 16:0:16:1 7 acids with growth in comparison with that previously published.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号