首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Denitrification is an important process in aquatic sediments, but its role has not been assessed in the N mass balance of upper-Midwestern (USA) reservoirs that receive large agricultural riverine N inputs. We used a 4400-ha reservoir to determine the role of denitrification in the N mass balance and effectiveness in reducing downstream transport of NO(3-)N. Sediment denitrification was (1) measured monthly (March 2002-March 2003) at eight sites in the Lake Shelbyville reservoir in central Illinois using the acetylene inhibition, chloramphenicol technique, (2) scaled to the overall reservoir and compared to N not accounted for in a mass balance, and (3) estimated indirectly using long-term (1981-2003) mass balances of N in the reservoir. Denitrification rates in the reservoir were high during spring and early summer of 2002, when maximum NO(3-)N concentrations were measured (10-14 mg NO(3-)N/L). We estimated that denitrification for the year was between 2580 and 5150 Mg N. Missing N from the mass balance was 3004 Mg N, suggesting that sediment denitrification was the sink. Areal rates of sediment denitrification in the reservoir ranged from 62 to 225 g N x m(-2) x yr(-1), with rates a function of both denitrification intensity (microg N x g dry mass x h(-1)) and the overall mass of sediment present. From 1981 to 2003 the average NO(3-)N inlet flux was 8900 Mg N/yr. About 58% of the total NO(3-)N input was removed, and annual NO(3-)N removed as a percentage of inputs was significantly related to reservoir retention time (average = 0.36 yr for the 23 years, range = 0.21-0.84 yr). By scaling denitrification in Lake Shelbyville to other reservoirs in Illinois, we estimated a sink of 48900 Mg N/yr. When combined with estimated in-stream denitrification, 60900 Mg N/yr was estimated to be removed by sediment denitrification. This reduces riverine export from Illinois to the Gulf of Mexico, where the flux during the 1990s was about 244000 Mg N/yr, and illustrates the importance of reservoir denitrification as an N sink in Midwestern agricultural landscapes.  相似文献   

2.
Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.  相似文献   

3.
The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.  相似文献   

4.
River floodplains have the potential to remove nitrate from water through denitrification, the anaerobic microbial conversion of nitrate to nitrogen gas. An important factor in this process is the interaction of river water with floodplain soil; however, many rivers have been disconnected from their historic floodplains by levees. To test the effect of reflooding a degraded floodplain on nitrate removal, we studied changes in soil denitrification rates on the Baraboo River floodplain in Wisconsin, USA, as it underwent restoration. Prior to this study, the site had been leveed, drained, and farmed for more than 50 years. In late fall 2002, the field drainage system was removed, and a gate structure was installed to allow controlled flooding of this site with river water. Soil moisture was extremely variable among zones and months and reflected local weather. Soil organic matter was stable over the study period with differences occurring along the elevation gradient. High soil nitrate concentrations occurred in dry, relatively organic-poor soil samples and, conversely, all samples with high moisture soils characterized by low nitrate. We measured denitrification in static cores and potential denitrification in bulk samples amended with carbon and nitrogen, one year before and two years following the manipulation. Denitrification rates showed high temporal and spatial variability. Static core rates of individual sites ranged widely (from 0.00 to 16.7 microg N2O-N x [kg soil](-1) x h(-1), mean +/- SD = 1.10 +/- 3.02), and denitrification enzyme activity (DEA) rates were similar with a slightly higher mean (from 0.00 to 15.0 microg N2O-N x [kg soil](-1) x h(-1), 1.41 +/- 1.98). Denitrification was not well-correlated with soil nitrate, organic matter content, or moisture levels, the three parameters typically thought to control denitrification. Static core denitrification rates were not significantly different across years, and DEA rates decreased slightly the second year after restoration. These results demonstrate that restored agricultural soil has the potential for denitrification, but that floodplain restoration did not immediately improve this potential. Future floodplain restorations should be designed to test alternative methods of increasing denitrification.  相似文献   

5.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.  相似文献   

6.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

7.
Denitrification across landscapes and waterscapes: a synthesis.   总被引:22,自引:0,他引:22  
Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled. In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves. Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N x km(-2) x yr(-1)) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.  相似文献   

8.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

9.
Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.  相似文献   

10.
亚热带可变电荷土壤化学性质与温带地区恒电荷土壤有诸多不同特点,使得反硝化具有一些与温带土壤不同的特性,进一步深入研究亚热带土壤反硝化气体产物的组成比例、主要影响因素和机理,将有助于加深对亚热带环境条件下土壤N循环的理解和认识,以及为正确评价亚热带土壤反硝化环境效应提高科学依据。因此,就亚热带土壤厌氧培养条件下反硝化的气态产物问题进行了探讨。土样采自江西典型亚热带红壤地区,在加入K15NO3(10 atom%15N,加入N量为200 mg·kg-1)条件下进行了7 d 30℃、密闭、淹水、充N2的严格厌氧培养试验。试验结果表明:随培养时间推移,15N回收率逐渐下降,土壤总残留的15NO3-质量分数和回收率之间存在显著正相关关系(p〈0.001),表明反硝化作用越弱的土样回收率越高。总气态氮损失率的估计值和实测值都随培养时间延长呈上升趋势,两者之间存在显著正相关性(p〈0.001)。根据稳定性同位素15N示踪试验结果初步估计,厌氧培养7 d内反硝化作用产生的气态产物中N2O占总气态氮损失的17.1%,N2占8.7%,估计NO可能是主要的反硝化产物之一。以未能回收的氮计算,NO约占总气态氮损失的67.5%~78.6%,平均为74.1%。反硝化气态产物中NO和N2O总量占总气态氮损失的91.3%。NO、N2O和N2分别占总施入氮量的18.6%、4.4%、2.0%。因此,亚热带土壤氮素反硝化过程中主要气态产物可能为NO和N2O,而非对环境无害的N2。  相似文献   

11.
The functional importance of invasive animals may be measured as the degree to which they dominate secondary production, relative to native animals. We used this approach to examine dominance of invertebrate secondary production by invasive New Zealand mudsnails (Potamopyrgus antipodarum) in rivers. We measured secondary production of mudsnails and native invertebrates in three rivers in the Greater Yellowstone Area (Wyoming, USA): Gibbon River, Firehole River, and Polecat Creek. Potamopyrgus production was estimated by measuring in situ growth rates and multiplying by monthly biomass; native invertebrate production was estimated using size frequency and instantaneous growth methods. Mudsnail growth rates were high (up to 0.06 d(-1)) for juvenile snails and much lower for adult females (0.003 d(-1)). Potamopyrgus production in Polecat Creek (194 g x m(-2) x yr(-1)) was one of the highest values ever reported for a stream invertebrate. Native invertebrate production ranged from 4.4 to 51 g x m(-2) x yr(-1). Potamopyrgus was the most productive taxon and constituted 65-92% of total invertebrate productivity. Native invertebrate production was low in all streams. Based on a survey of production measures from uninvaded rivers, the distribution of secondary production across taxa was much more highly skewed toward the invasive dominant Potamopyrgus in the three rivers. We suggest that this invasive herbivorous snail is sequestering a large fraction of the carbon available for invertebrate production and altering food web function.  相似文献   

12.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25-38 kg ha(-1) yr(-1)). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3-. Transformation of N to NO3- in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3- from the root zone of the soils, little NO3- appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3- in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

13.
Nitrogen export from an agriculture watershed in the Taihu Lake area, China   总被引:13,自引:0,他引:13  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8-43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO(3-)-N + NH4+-N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

14.
Tank JL  Rosi-Marshall EJ  Baker MA  Hall RO 《Ecology》2008,89(10):2935-2945
Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.  相似文献   

15.
The factors controlling spatial and temporal patterns in soil solution and streamwater chemistry are highly uncertain in northern hardwood forest ecosystems in the northeastern United States, where concentrations of reactive nitrogen (Nr) in streams have surprisingly declined over recent decades in the face of persistent high rates of atmospheric Nr deposition and aging forests. Reactive nitrogen includes inorganic species (e.g., ammonium [NH4+], nitrate [NO3-]) and some organic forms (e.g., amino acids) available to support the growth of plants and microbes. The objective of this study was to examine controls on the spatial and temporal patterns in the concentrations and fluxes of nitrogen (N) species and dissolved organic carbon (DOC) in a 12-year record of soil solutions and streamwater along an elevational gradient (540-800 m) of a forested watershed at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire, USA. Dissolved organic N and DOC concentrations were elevated in the high-elevation spruce-fir-white birch (SFB) zone of the watershed, while NO3- was the dominant N species in the lower elevation hardwood portion of the watershed. Within the soil profile, N retention was centered in the mineral horizon, and significant amounts of N were retained between the lower mineral soil and the stream, supporting the idea that near- and in-stream processes are significant sinks for N at the HBEF. Temporal analysis suggested that hydrologic flow paths can override both abiotic and biotic retention mechanisms (i.e., during the non-growing season when most hydrologic export occurs, or during years with high rainfall), there appears to be direct flushing of N from the organic horizons into the stream via horizontal flow. Significant correlations between soil NO3- concentrations, nitrification rates and streamwater NO3- exports show the importance of biological production as a regulator of inorganic N export. The lack of internal production response (e.g., mineralization, nitrification) to a severe ice storm in 1998 reinforces the idea that plant uptake is the dominant regulator of export response to disturbance.  相似文献   

16.
We conducted a four-week laboratory incubation of soil from a Themeda triandra Forsskal grassland to clarify mechanisms of nitrogen (N) cycling processes in relation to carbon (C) and N availability in a hot, semiarid environment. Variation in soil C and N availability was achieved by collecting soil from either under tussocks or the bare soil between tussocks, and by amending soil with Themeda litter. We measured N cycling by monitoring: dissolved organic nitrogen (DON), ammonium (NH4+), and nitrate (NO3-) contents, gross rates of N mineralization and microbial re-mineralization, NH4+ and NO3- immobilization, and autotrophic and heterotrophic nitrification. We monitored C availability by measuring cumulative soil respiration and dissolved organic C (DOC). Litter-amended soil had cumulative respiration that was eightfold greater than non-amended soil (2000 compared with 250 microg C/g soil) and almost twice the DOC content (54 compared with 28 microg C/g soil). However, litter-amended soils had only half as much DON accumulation as non-amended soils (9 compared with 17 microg N/g soil) and lower gross N rates (1-4 compared with 13-26 microg N x [g soil](-1) x d(-1)) and NO3- accumulation (0.5 compared with 22 microg N/g soil). Unamended soil from under tussocks had almost twice the soil respiration as soil from between tussocks (300 compared with 175 microg C/g soil), and greater DOC content (33 compared with 24 microg C/g soil). However, unamended soil from under tussocks had lower gross N rates (3-20 compared with 17-31 microg N x [g soil](-1) d(-1)) and NO3- accumulation (18 compared with 25 microg N/g soil) relative to soil from between tussocks. We conclude that N cycling in this grassland is mediated by both C and N limitations that arise from the patchiness of tussocks and seasonal variability in Themeda litterfall. Heterotrophic nitrification rate explained >50% of total nitrification, but this percentage was not affected by proximity to tussocks or litter amendment. A conceptual model that considers DON as central to N cycling processes provided a useful initial framework to explain results of our study. However, to fully explain N cycling in this semiarid grassland soil, the production of NO3- from organic N sources must be included in this model.  相似文献   

17.
The fate of nitrate in sediments from seagrass (Zostera capricorni Aschers.) beds of Moreton Bay on the subtropical eastern coast of Queensland, Australia, was investigated. Added nitrate was metabolised at rates of 0.4 to 3.4 g N cm-3 d-1 when sediments were incubated under anaerobic conditions with a large excess of nitrate. The potential rate of nitrate utilization was as rapid in sediments from subtidal bare areas as from adjacent seagrass beds. Ammonium was produced rapidly from15N-nitrate by microbial action in all the subtidal sediments examined. After 12 h of incubation, 13 to 28% of the15N initially added as labelled nitrate was detected as labelled ammonium in the sediments. Denitrification, although not measured directly, appeared to be a relatively minor fate of nitrate. Benthic microbes took up large amounts of15N but only after a delay of 6 h; this pattern could have been due to induction and synthesis of the enzymes necessary for nitrate uptake, and the assimilation of labelled ammonium. Under field conditions, assimilation by seagrasses and denitrification by bacteria were probably not significant sinks for nitrate in comparison with uptake by benthic microbes and dissimilatory reduction to ammonium.  相似文献   

18.
Many studies have shown that intensive agricultural practices significantly increase the nitrogen concentration of stream surface waters, but it remains difficult to identify, quantify, and differentiate between terrestrial and in-stream sources or sinks of nitrogen, and rates of transformation. In this study we used the delta15N-NO3 signature in a watershed dominated by agriculture as an integrating marker to trace (1) the effects of the land cover and agricultural practices on stream-water N concentration in the upstream area of the hydrographic network, (2) influence of the in-stream processes on the NO3-N loads at the reach scale (100 m and 1000 m long), and (3) changes in delta15N-NO3 signature with increasing stream order (from first to third order). This study suggests that land cover and fertilization practices were the major determinants of delta15N-NO3 signature in first-order streams. NO3-N loads and delta15N-NO3 signature increased with fertilization intensity. Small changes in delta15N-NO3 signature and minor inputs of groundwater were observed along both types of reaches, suggesting the NO3-N load was slightly influenced by in-stream processes. The variability of NO3-N concentrations and delta15N signature decreased with increasing stream order, and the delta15N signature was positively correlated with watershed areas devoted to crops, supporting a dominant effect of agriculture compared to the effect of in-stream N processing. Consequently, land cover and fertilization practices are integrated in the natural isotopic signal at the third-order stream scale. The GIS analysis of the land cover coupled with natural-abundance isotope signature (delta15N) represents a potential tool to evaluate the effects of agricultural practices in rural catchments and the consequences of future changes in management policies at the regional scale.  相似文献   

19.
灰泥土中不同氮肥品种反硝化损失与N2O排放量的差异   总被引:4,自引:0,他引:4  
在实验室培养条件下,采用土壤培养-乙炔抑制法测定尿素、碳酸氢铵、硫酸铵和氯化铵4种氮肥品种在灰泥土中反硝化损失和N2O排放量的差异。结果表明,氮肥品种间的N2O排放量和反硝化损失量存在极显著差异。尿素、碳铵和氯化铵的N2O排放量极显著高于硫铵,占施肥量的3.88%-4.14%;尿素和碳铵的反硝化损失量分别为施肥量的5.8%和3.7%,极显著高于硫铵和氯化铵;但氯化铵的反硝化损失量显著低于CK。  相似文献   

20.
Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China   总被引:6,自引:0,他引:6  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8–43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO 3 -N + NH 4 + -N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号