首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

2.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

3.
The chemical composition and size distribution of submicron aerosols were analyzed at a suburban site at Saitama, Japan, in the winter of 2004/2005, using an Aerodyne aerosol mass spectrometer. Although organics and nitrate were the dominant species during the sampling period, a large fraction of sulfate was observed at the accumulation mode when mass loading was low and wind speed was high. The size distributions of m/z 44 (mostly CO2+) and sulfate aerosols during periods of high wind speed showed remarkable similarities in the accumulation mode, indicating that oxygenated organics were aged aerosols and internally mixed with sulfate. Ozone concentrations were also increased during these high wind speed periods although nighttime (e.g., 12/17 2004), indicating that the oxygenated compounds were strongly influenced by transported and aged air masses. The diurnal profiles of ultrafine-mode organics and hydrocarbon-like organic aerosols (HOA) were similar to NOX derived from traffic and other combustion sources. The temporal variation of oxygenated organic aerosols (OOA) agreed well with that of nitrate as a secondary aerosol tracer, and the diurnal profile of the OOA fraction of organics increased during the day associated with higher UV light intensity. The result of time and size-resolved chemical composition of submicron particles indicated that the OOA is associated with both photochemical activity and transboundary pollution, and ultrafine-mode organic and HOA aerosols are mainly associated with combustion sources.  相似文献   

4.
The water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process.  相似文献   

5.
大气溶胶对环境污染、气候变化以及人体健康有着重要的影响,大气溶胶的采集和分析已成为当前大气环境研究领域中的一个重要课题.论述的新型多级冲击采样器能够实现大气溶胶颗粒物按空气动力学粒径的大小7级分离采集,提供大致均匀的平面样品以进行后续的物理、化学分析,同时保证各分级切割粒径的稳定性.利用振动孔溶胶发生器产生均匀、粒径大致相同、单分散相的1.5~17μm空气动力学粒径标准粒子,对新型多级冲击采样器前三级的切割粒径和收集效率进行鉴定性分析实验,结果表明,能够满足对大气溶胶颗粒物分级采集的要求.  相似文献   

6.
Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1- enrichment on the marine boundary layer prior to a dust front were also found. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for sector and air mass classifications of clean and LRT cases.  相似文献   

7.
Quantifying combustion aerosols transported to Summit, Greenland has typically involved the measurement of water-soluble inorganic and organic ions in air, snow, and ice. However, the ubiquitous nature of atmospheric soluble ions makes it difficult to separate the combustion component from the natural component. More specific combustion indicators are therefore needed to accurately quantify inputs from biomass and fossil-fuel burning. This work reports on radiocarbon (14C) analysis of elemental carbon (EC) and quantification of polycyclic aromatic hydrocarbons (PAHs) of water-insoluble particles from a snowpit excavated at Summit, Greenland in 1996. The 14C measurements allowed us to quantify the relative contribution of EC from biomass burning and fossil-fuel combustion transported to and deposited at Summit during periods of 1994 and 1995. Specific PAHs associated with conifer combustion helped to identify snowpit layers impacted by forest fires. Our results show that fossil EC was the major component during spring and fall 1994, while biomass EC and fossil EC were present in roughly equal amounts during summer 1994. PAH ratios in spring layers of the snowpit indicate substantial inputs from anthropogenic sources and the ΣPAH depth profile displays springtime maxima that coincided with non-sea-salt sulfate ion maximum concentrations. In other layers, ammonium ion concentrations were independent of the isotopic and molecular carbon measurements. This work demonstrates the utility of radiocarbon techniques to quantify the two different sources of combustion-generated particles at Summit; however, portions of the 14C results were indeterminate due to large uncertainties that were the result of chemical impurities introduced in the EC isolation technique. Additionally, PAH measurements were successfully performed on as little as 100 ml of snowmelt water, demonstrating the potential for future finer sample resolution.  相似文献   

8.
A synopsis of the detailed temporal variation of the size and number distribution of particulate matter (PM) and its chemical composition on the basis of measurements performed by several regional research consortia funded by the U.S. Environmental Protection Agency (EPA) PM Supersite Program is presented. This program deployed and evaluated a variety of research and emerging commercial measurement technologies to investigate the physical and chemical properties of atmospheric aerosols at a level of detail never before achieved. Most notably these studies demonstrated that systematic size-segregated measurements of mass, number, and associated chemical composition of the fine (PM2.5) and ultrafine (PM0.1) fraction of ambient aerosol with a time resolution down to minutes and less is achievable. A wealth of new information on the temporal variation of aerosol has been added to the existing knowledge pool that can be mined to resolve outstanding research and policy-related questions. This paper explores the nature of temporal variations (on time scales from several minutes to hours) in the chemical and physical properties of PM and its implications in the identification of PM formation processes, and source attribution (primary versus secondary), the contribution of local versus transported PM and the development of effective PM control strategies. The PM Supersite results summarized indicate that location, time of day, and season significantly influence not only the mass and chemical composition but also the size-resolved chemical/elemental composition of PM. Ambient measurements also show that ultrafine particles have different compositions and make up only a small portion of the PM mass concentration compared with inhalable coarse and fine particles, but their number concentration is significantly larger than their coarse or fine counterparts. PM size classes show differences in the relative amounts of nitrates, sulfates, crustal materials, and most especially carbon as well as variations in seasonal and diurnal patterns.  相似文献   

9.
To evaluate the effects of the environment on weathering of monuments of Istria stone in Venice, systematic mineralogical, petrographical and elemental analyses of depth profiles were performed on samples of surficial crusts (dendritic black, compact black, grey and white). Decay products of deposition and interactions between gases and stone, including wind blown dust, marine salts, anthropic aerosol, gypsum and nitrates, are incorporated into the mineral matrix down to a depth of 10 mm. In areas sheltered from rain, where black and grey crusts are observed, the high general humidity, carbonaceous particles and deposition of aerosols lead to the development of gypsum and other salts. In compact and grey crusts decay products decrease; in grey crusts carbonaceous particles are reduced, but in compact black crust products of previous treatments are found. In white crusts, formed in areas experiencing effective wash-out, chemical and mechanical attack cause surface recession.  相似文献   

10.
Carbonaceous aerosols are emitted by combustion sources and may influence the climate by altering the radiation balance of the atmosphere. Carbonaceous particles exist mainly in the accumulation mode and thus may be transported over long distances. The present study deals with the impact of anthropogenic activity associated with accidental fires on the black carbon aerosol concentrations over an urban environment, namely Hyderabad, India. Black carbon aerosol loading in association with meteorological parameters on a normal day, an accident day and a post-accident day have been analysed. Diurnal variations of black carbon aerosols on a normal day suggest that black carbon aerosol concentrations increased by a factor of about 2 during morning and evening hours compared with afternoon hours. A drastic increase in black carbon aerosol loading was found during an accident day compared with a normal day. An immediate return to normal black carbon concentration was found during the post-accident day. Black carbon aerosol loading in relation to rainfall is also discussed in the paper.  相似文献   

11.
Secondary organic aerosol (SOA) formation is enhanced on acidic seed particles; SOA also forms during cloud processing reactions where acidic sulfate is prevalent. Recently several studies have focused on the identification of organosulfates in atmospheric aerosols or smog chamber experiments, and upon the mechanism of formation for these products. We identify several organosulfate products formed during the laboratory OH radical oxidation of dilute aqueous glycolaldehyde in the presence of sulfuric acid. We propose a radical–radical reaction mechanism as being consistent with formation of these products under our experimental conditions. Using a kinetics model we estimate that organosulfates account for less than 1% of organic matter formed from these precursors during cloud processing. However, in wet acidic aerosols, where precursors are highly concentrated and acidic sulfate makes up close to half of the aerosol mass, this radical–radical reaction could account for significant organosulfate production.  相似文献   

12.
The link between the African Monsoon systems and aerosol loading in Africa is studied using multi-year satellite observations of UV-absorbing aerosols and rain gauge measurements.The main aerosol types occurring over Africa are desert dust and biomass burning aerosols, which are UV-absorbing. The abundance of these aerosols over Africa is characterised in this paper using residues and Absorbing Aerosol Index (AAI) data from Global Ozone Monitoring Experiment (GOME) on board ERS-2 and SCanning Imaging Absorption SpectroMeter for Atmospheric ChartograpHY (SCIAMACHY) on board Envisat.Time series of regionally averaged residues from 1995 to 2008 show the seasonal variations of aerosols in Africa. Zonally averaged daily residues over Africa are related to monthly mean precipitation data and show monsoon-controlled atmospheric aerosol loadings. A distinction is made between the West African Monsoon (WAM) and the East African Monsoon (EAM), which have different dynamics, mainly due to the asymmetric distribution of land masses around the equator in the west. The seasonal variation of the aerosol distribution is clearly linked to the seasonal cycle of the monsoonal wet and dry periods in both studied areas.The residue distribution over Africa shows two distinct modes, one associated with dry periods and one with wet periods. During dry periods the residue varies freely, due to aerosol emissions from deserts and biomass burning events. During wet periods the residue depends linearly on the amount of precipitation, due to scavenging of aerosols and the prevention of aerosol emissions from the wet surface. This is most clear over east Africa, where the sources and sinks of atmospheric aerosols are controlled directly by the local climate, i.e. monsoonal precipitation. Here, the wet mode has a mean residue of ?1.4 and the dry mode has a mean residue of ?0.3. During the wet modes a reduction of one residue unit for every 160 mm monthly averaged precipitation was found. Shielding effects due to cloud cover may also play a role in the reduction of the residue during wet periods.A possible influence of aerosols on the monsoon, via aerosol direct and indirect effects, is plausible, but cannot directly be deduced from these data.  相似文献   

13.
Atmospheric aerosol particulate matter was directly collected in the free troposphere over the Japan Sea coast between 1992 and 1994 using an aircraft-borne nine-stage cascade impactor (particle size range: 0.1–8 μm). The water-soluble components in the aerosol particulate matter were analyzed by ion chromatography. Particulate sulfate and ammonium were detected in most of the samples and their size distributions showed noticeable peaks below the 1 μm particle size range. Water-soluble calcium (Ca2+) was detected in half of the samples; the size distribution showed that the maximum particle size was larger than 1 μm. Highly concentrated Ca2+ in larger particles was possibly due to transport of Kosa aerosols from the Asian continent in the free troposphere. The concentration of fine particulate sulfate and ammonium tended to increase whenever Ca2+ was detected, which suggests possible mixing of Kosa aerosols and non-Kosa aerosols during long-range transport of air masses containing Kosa particles.  相似文献   

14.
Scavenging by water droplets is a mechanism for aerosol removal near clouds. Numerical methods are developed to quantify the removal of charged radioactive aerosols, including the electrical image force's contribution, attractive at small separations. Charging of radioactive aerosols is found to have significant effects on their collision efficiency and scavenging coefficient. The effect depends on the aerosol charge, and therefore, on the radioactive aerosol's decay rate and number concentration, but it does not depend significantly on the charge carried by the water drops. Scavenging coefficients are calculated for radioactive aerosols. For small particles at low aerosol concentrations (Z∼10–100 cm−3), charging can increase the scavenging coefficients by up to an order of magnitude. Electrification will, therefore, encourage the removal of small radioactive aerosols from the atmosphere, more rapidly than equivalent non-radioactive aerosols. The increase in removal at low radioactive-aerosol concentration may account for underpredictions of surface concentrations and will contribute to spatial variations in aerosol removal.  相似文献   

15.
Size-resolved particle composition, mass and number concentrations, aerosol scattering coefficients, and prevailing meteorological conditions were measured at the Ellen Browning Scripps Memorial Pier located in La Jolla, California on 15 December 1998. Aerosol particles were sampled using a field transportable aerosol time-of-flight mass spectrometer, allowing for the continuous detection and characterization of single particles from a polydisperse sample. An extensive and rapid change in the chemical composition of aerosol particles with aerodynamic diameters between 1.0 and 2.5 μm has been observed during the onset of a Santa Ana Winds condition. Coincident with the observed change in meteorological conditions, a substantial decrease in sea salt particles corresponds to an increase in dust and carbon-containing particles. This paper examines observations of the rapid changes occurring in the chemical composition of single aerosol particles and demonstrates the new types of information that can be obtained by measuring single particle size and composition with high temporal resolution.  相似文献   

16.
Individual aerosol particles were collected on three days with different meteorological conditions in June 2000 in the urban atmosphere of Tsukuba, Japan. The samples collected with an electrostatic aerosol sampler (EAS) were examined by electron microscopy. The mixing properties of submicrometer aerosol particles of 0.02–0.2 μm radius were studied using the dialysis (extraction) of water-soluble material. Atmospheric aerosol particles were classified into four types with respect to the mixtures of water-soluble and water-insoluble material. The proportions of particles with water-soluble material (hygroscopic particles) ranged from 20% to 80% in the whole radius range and tended to increase with increasing radius. Moreover, by the morphological appearance, soot-containing particles were classified into two types, i.e., externally mixed soot-particles and internally mixed soot-particles. The number fractions of internally mixed soot-particles increased with increasing radius. It is found that the volume fraction of water-soluble material (ε) for the internally mixed soot-particles increased with increasing radius. In a “polluted” case, the sample showed a dominant number fraction (75%) of internally mixed soot-particles in the larger radius range of 0.1–0.2 μm.  相似文献   

17.
A major difficulty encountered in laboratory research on the atmospheric interaction of an aerosol-gas system is the unstable nature of the aerosol phase. Previously reported aerosol stabilizing techniques often severely alter the aerosol so that laboratory results cannot be validly extrapolated to the atmospheric environment. A new technique which does not alter the nature of the aerosol is described in this paper.

Aerosol particles are deposited on an inert substrate such as Teflon beads. The deposition is carried out in a fluidized-bed to ensure discrete aerosol deposition and to achieve a uniform distribution of aerosol concentration on the supporting beads. Aerosol-gas interactions can be investigated conveniently by exposing these stabilized aerosols to the reacting gases in dynamic or static systems. Laboratory results obtained by using stabilized aerosols may be extrapolated to the atmospheric environment.

This aerosol stabilizing technique was incorporated into an investigation of the particulate-catalyzed atmospheric oxidation of sulfur dioxide. Teflon beads with deposited aerosol particles of CuCl2, MnCl2, and NaCI were exposed to 4–42 ppm of sulfur dioxide in a plug flow reactor. The rate of oxidation of sulfur dioxide was found to be influenced by type of catalyst, concentration of catalyst, relative humidity and concentration of sulfur dioxide. The rate of oxidation by sodium chloride particulate was measurable at low to moderate relative humidities (45–60%), but the rate was several times higher when the sodium chloride catalyst particles change from solid form into droplet form at high relative humidities (>80%).  相似文献   

18.
The geochemistry of PM10 filter samples collected at sea during the Scholar Ship Atlantic–Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V–Ni-bearing combustion particles as the main PM10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in “geological” elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban–industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.  相似文献   

19.
This study investigates the source identification of nickel in the aerosol of the Tokyo metropolitan area. TSP and PM2.5 samples were collected daily from August to November 2004. The samples were examined by means of the water-extraction method, followed by elemental analysis and SEM/EDX analysis. We distinguished two types of atmospheric nickel sources in the studied area: (1) particles derived from heavy oil combustion, distributed mostly in fine particles such as PM2.5, relatively water-soluble, and containing vanadium and (2) particles derived from mechanical abrasion/erosion of metallic surfaces, distributed in coarse particles such as TSP, relatively water-insoluble, and containing chromium.  相似文献   

20.
The effect of relative humidity (RH) on aerosol formation by the semi-volatile oxidation products of the α-pinene/O3 system has been comprehensively studied. Experiments were performed in the presence of ammonium sulfate (aqueous, dry), ammonium bisulfate seed (aqueous, dry), and aqueous calcium chloride seed aerosols to ascertain their effect on the partitioning of the oxidation products. The yield of organic aerosol varies little with RH, and is not affected by the presence of dry inorganic salt aerosols. Aqueous salt aerosols reduce the yield of organic aerosol compared to that under seed-free or dry seed conditions. The degree of reduction is electrolyte dependent, with aqueous ammonium sulfate leading to the largest reduction and aqueous calcium chloride the smallest. Hygroscopic growth of the organic aerosol from <2% to 85% RH was also monitored, and could be satisfactorily represented as the sum of the individual contributions of the organic and inorganic fractions. The implications of the growth factor measurements for concentration/activity relationships of the condensed phase organic material (assuming a liquid solution) was explored. The formation of the organic aerosol was investigated using a simple two component model, and also one including the 12 product compounds identified in a previous study. The experimental results for <2% and 50% RH (without salt seed aerosols) could be satisfactorily predicted. However, the aqueous salt seed aerosols are predicted to increase the overall yield due to the dissolution of the organic compounds into the water associated with the seed aerosol—the opposite effect to that observed. The implications of two distinct phases existing the aerosol phase were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号