首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76–2.18 from RH=10–90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH4)2SO4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.  相似文献   

2.
A study of the electrostatic enhancement of collection efficiency of filters pretreated with ionic surfactants has been carried out in controlled conditions with monodisperse aerosols. Cationic surfactant (dimethyl dioctadecylammonium bromide [DDAB]) and anionic surfactant (sodium oleate [SO]) were used to pretreat polypropylene fibrous filters as the positively and negatively charged filters, respectively. The effects of aerosol size, aerosol charge state, face velocity, aerosol type, and relative humidity (RH) were considered to elucidate their influence on the aerosol penetration. Results indicate that penetration through surfactant-pretreated filters was lower than that through untreated filters, and pretreatment of the filter with surfactant was observed not to affect the structure of the filter. The electrofieldmeter direct-measured the very clear electric field of filter when treating ionic surfactants. The results proved that pretreatment with surfactant caused filters to become charged. Comparing penetration through surfactant-pretreated filters with that through untreated filters with neutral aerosol, the penetration reduction factor of the surfactant-pretreated filters was in the range 1.3-2.2. Comparing aerosol penetration through the surfactant-pretreated filters with singly charged aerosol with that through untreated filters with uncharged aerosol indicates that the former decreases by a factor of 1.8-48.8. The surface fiber charges of the DDAB- and SO-pretreated filters were calculated to be 2.02 x 1(-10) C/m and -1.53 x 10(-1) degrees C/m. Moreover, the aerosol penetrations through the surfactant-pretreated filters increased with the face velocity. Surfactant-pretreated filters performed better against solid aerosol than against liquid aerosol. RH has no effect on aerosol penetration through the surfactant-pretreated filters. Regression equations for Coulombic and dielectrophoretic single-fiber efficiencies in terms of the dimensionless parameters could be fitted by the experimental measurements of surfactant-pretreated filters in this work.  相似文献   

3.
A model is presented that predicts the total quantities of ammonium, chloride, nitrate and water contained in atmospheric aerosols, their physical state and their distribution among aerosol particles of different sizes. The model is based on the thermodynamic equilibrium calculation of the ammonium/chloride/nitrate/sodium/sulfate/water system. The existence of water in the aerosol phase at low relative humidities is shown to be explained. Observed aerosol concentrations at Long Beach, California during 30–31 August 1982 are successfully predicted.  相似文献   

4.
A major difficulty encountered in laboratory research on the atmospheric interaction of an aerosol-gas system is the unstable nature of the aerosol phase. Previously reported aerosol stabilizing techniques often severely alter the aerosol so that laboratory results cannot be validly extrapolated to the atmospheric environment. A new technique which does not alter the nature of the aerosol is described in this paper.

Aerosol particles are deposited on an inert substrate such as Teflon beads. The deposition is carried out in a fluidized-bed to ensure discrete aerosol deposition and to achieve a uniform distribution of aerosol concentration on the supporting beads. Aerosol-gas interactions can be investigated conveniently by exposing these stabilized aerosols to the reacting gases in dynamic or static systems. Laboratory results obtained by using stabilized aerosols may be extrapolated to the atmospheric environment.

This aerosol stabilizing technique was incorporated into an investigation of the particulate-catalyzed atmospheric oxidation of sulfur dioxide. Teflon beads with deposited aerosol particles of CuCl2, MnCl2, and NaCI were exposed to 4–42 ppm of sulfur dioxide in a plug flow reactor. The rate of oxidation of sulfur dioxide was found to be influenced by type of catalyst, concentration of catalyst, relative humidity and concentration of sulfur dioxide. The rate of oxidation by sodium chloride particulate was measurable at low to moderate relative humidities (45–60%), but the rate was several times higher when the sodium chloride catalyst particles change from solid form into droplet form at high relative humidities (>80%).  相似文献   

5.
This study aims to determine the source apportionment of surfactants in marine aerosols at two selected stations along the Malacca Straits. The aerosol samples were collected using a high volume sampler equipped with an impactor to separate coarse- and fine-mode aerosols. The concentrations of surfactants, as methylene blue active substance and disulphine blue active substance, were analysed using colorimetric method. Ion chromatography was employed to determine the ionic compositions. Principal component analysis combined with multiple linear regression was used to identify and quantify the sources of atmospheric surfactants. The results showed that the surfactants in tropical coastal environments are actively generated from natural and anthropogenic origins. Sea spray (generated from sea-surface microlayers) was found to be a major contributor to surfactants in both aerosol sizes. Meanwhile, the anthropogenic sources (motor vehicles/biomass burning) were predominant contributors to atmospheric surfactants in fine-mode aerosols.  相似文献   

6.
We used an environmental transmission electron microscope to observe deliquescence and hygroscopic growth of atmospheric particles with hygroscopic coatings over the range 0–100% relative humidity (RH). The particles were collected from polluted and clean environments. Types included a sulfate-coated NaCl/silicate aggregate particle, a sulfate-coated sea-salt particle, and a Mg-rich, chloride-coated sea-salt particle. They all exhibited initial water uptake between 50% and 60% RH, although the first major morphological changes occurred at 70% RH. A deliquescence sphere, adjacent to the core particle, formed between 70% and 76% RH when deliquescence occurred or when the liquid phase was able to break out of the solid exterior coating. The deliquescence sphere grew to engulf the particle with increasing RH. Some particles developed a splatter zone associated with a particle coating. Efflorescence occurred over the range 49–44% RH. Our results indicate that some coated particles undergo a multi-step deliquescence process and that composition of the different phases within the coating affects deliquescence and hygroscopic growth below 76% RH. Above 76% RH, the dominant hygroscopic growth was due to water uptake by NaCl. Efflorescence of these particles also was strongly linked to NaCl, although the presence of other phases inhibited formation of a single NaCl crystal. Our results show that the observed coatings can both enhance particle solubility and lower the effective deliquescence RH of the particle. Thus, these coatings cause important phase and size changes for aerosol particles that could feed back into many other chemical and physical processes that contribute to radiative forcing within the atmosphere.  相似文献   

7.
Abstract

A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

8.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

9.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

10.
Measurements of gas–particle-partitioning coefficients for reactive mercury in dry urban and laboratory aerosol were found to strongly depend on ambient temperature. Samples of atmospheric and laboratory aerosols (defined as both the gas and particle phases) were collected using filter and absorbent methods and analyzed for reactive mercury using thermal desorption combined with cold vapor atomic fluorescence spectroscopy. Synthetic ambient aerosols were generated in the laboratory from ammonium sulfate and adipic acid mixed with mercuric chloride in a purpose-built aerosol reactor. The aerosol reactor was operated in a temperature-controlled laboratory. Linear relationships between the logarithm of inverse gas–particle partitioning and inverse temperature were observed and parameterized for use in the atmospheric modeling of reactive mercury. Reactive mercury was observed to partition from the particle to the gas phase as ambient temperature increased. Good agreement between measurements made using urban and laboratory aerosols was seen after gas–particle-partitioning coefficients were normalized for surface area instead of mass. Thermodynamic analyses of the urban and laboratory gas–particle-partitioning measurements revealed that the strength of interaction between reactive mercury and particle surfaces was suggestive of chemisorption. Gas–particle-partitioning coefficients made with the Tekran ambient mercury analyzer (AMA) also showed a dependence on temperature. However, the Tekran AMA partitioning coefficients did not agree well with partitioning coefficients measured using the filter-based methods. The disagreement is consistent with the 50 °C operational temperature of the Tekran AMA.  相似文献   

11.
The water uptake by fine aerosol particles in the atmosphere has been investigated at three rural National Parks in the United States (Great Smoky Mountains, Grand Canyon and Big Bend National Parks). The relative humidity (RH) of sample aerosols was varied from less than 20% to greater than 90% using Perma Pure drying tubes as the scattering coefficient of the aerosol was measured with a Radiance Research M903 nephelometer. Data from these studies show that growth curves at all the three sites are similar in shape but the magnitude of growth can vary considerably from day to day. The growth curves from Great Smoky Mountains show smooth continuous growth over the entire range of RH, while the growth curves from the Grand Canyon and Big Bend show smooth and continuous growth on some days and deliquescence on other days. Comparing 12-h filter samples of chemical composition data with the aerosol growth curves, we find that higher fractions of soluble inorganic compounds (sulfate and nitrate) produce growth curves of greater magnitude than do higher concentrations of either organic carbon or soil material.  相似文献   

12.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

13.
On 28 and 29 November 2005, the tropical storm Delta struck the Canary Islands (Spain) and the western shores of Morocco. Gravimetric and radiometric measurements carried out in atmospheric aerosol and water samples, collected after the storm, showed increased levels of total suspended particles (TSP) in the atmosphere and gross alpha, gross beta as well as 90Sr activities in both the atmosphere and drinking water. These variations were most likely produced by local re-suspension of soil material. However, 210Pb and 7Be activities, measured in atmospheric aerosols, did not increase until a week after the storm had passed. 40K and 137Cs activities, also measured in atmospheric aerosols, did not vary significantly with respect to previous weeks indicating that the slightly higher levels of TSP, measured during the week when the storm occurred, were not produced by the long-range transport of re-suspended aerosols from the African continent, as it has been observed in other occasions at this site. Gross alpha, gross beta, 40K and 90Sr levels in drinking water samples increased after the storm over their average values by approximately 245%, 245%, 130% and 440%, respectively. These results indicate how important the local re-suspension and later deposition/scavenging of aerosols may be on the water supply in Tenerife.  相似文献   

14.
It is commonly assumed that atmospheric oxidation of hydrocarbon particles or hydrocarbon coatings on particles leads to polar products and increased water uptake, altering atmospheric visibility and increasing the likelihood they will act as cloud condensation nuclei (CCN). We show here through laboratory experiments that increased water uptake depends on the 3-dimensional structure of the particles. Laboratory studies of particles formed during ozonolysis of surface-bound alkenes, present as terminally unsaturated self-assembled monolayers (C8= SAM) on a silica substrate, were carried out at room temperature and 1 atm pressure. SAMs were exposed to ~1013 O3 molecules cm?3 for 40 min and resultant particles were analyzed using single particle Fourier transform infrared micro-spectroscopy (micro-FTIR) and secondary ion mass spectroscopy (SIMS). Spectroscopy results show that –COOH and other polar groups are formed but are buried inside a hydrophobic shell, consistent with earlier observations (McIntire et al., 2005, Moussa et al., 2009) that water uptake does not increase after reaction of the terminal alkene with O3. These insights into the 3-D structure of particles formed on oxidation have important implications for the ability of secondary organic aerosols to act as CCN. In addition, the nature of the surface of the particles is expected to determine their uptake into biological systems such as the surface of the lungs.  相似文献   

15.
A direct method for characterizing organic material in atmospheric aerosols has been devised. Size segregated particulates, collected on ZnSe disks, were analyzed using Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra were used to identify compound classes present in the aerosols; the distribution of functional groups varied with particle size and depended on whether the aerosol was collected at a primary or secondary receptor site.  相似文献   

16.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

17.
In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to prevent aerosol particles being exchanged from the PBL height to the free troposphere. As a result, the aerosol particles were strongly depressed in the PBL height, producing high surface aerosol concentrations. The measured vertical aerosol distributions have important implications for studying the effects of aerosols on photochemistry. The J[O3] values are reduced by 11%, 48%, and 50%, under the type-1, type-2, and type-3 conditions, respectively. This result reveals that atmospheric oxidant capacity (OH concentrations) is modestly reduced under the type-1 condition, but is significantly reduced under the type-2 and type-3 conditions. This result also suggests that the effect of aerosol particles on surface solar flux is an integrated column effect, and detailed vertical distributions of aerosol particles are very important for assessing the impacts of aerosol on photochemistry.  相似文献   

18.
An experimental investigation was undertaken to isolate and quantitatively determine the effect relative humidity has on the light-scattering ability of aerosols. Both the naturally-occurring ambient aerosol of State College, Pa., and several common test aerosols were used. A measured flow of aerosol was mixed with a measured flow of particle-free air to form a mixture of constant contaminant level; the humidity of this mixture was varied by controlling the moisture content of the clean diluent air. The total light scattered by a given aerosol sample, at various relative humidities, was measured with a Sinclair-Phoenix aerosol photometer (measures the total light scattered in the near forward direction). All measurements were carried out at atmospheric pressure, and after the particulates had an average of 1½ minutes to reach equilibrium with the water vapor. Natural and laboratory-generated aerosols were both tested in this manner.  相似文献   

19.
This work intends to quantify the variation in optical properties of aerosol by in-situ spectroscopic monitoring the ozonolysis of a mixture of typical biomass burning compounds. The reaction occurs on silica and glass particles in the presence of simulated sunlight.Fused silica particles (Aerosil) were coated with a thin film of a 1:1 mixure of 4-phenoxyphenol with 4-carboxyphenone as a photosensitizer. UV–VIS spectra of dichloromethane extracts from the particles recorded before and after treatment, show development of a new band after prolonged ozone and light exposure.Changes in optical properties are reported, and variations of spectroscopic features are discussed. We show that the ozone-induced heterogeneous photochemical reaction does produce species absorbing light in the solar spectral range. Further, we demonstrate that the heterogeneous photosensitized reactions at 200 ppb ozone (strongly ozone polluted regions) for a time period of 7 h aging process, can increase light absorption of atmospheric aerosols in the tropospheric actinic window (>290 nm) by 0.4 absorption units ng-C?1 O3 ppm?1 in the region 290–358 nm and by 1.0 absorption units ng-C?1 O3 ppm?1 in the region 360–448 nm.Chemical changes of such surface films were identified by diffuse reflectance infrared Fourier transform spectroscopy of coated glass spheres, and we suggest formation of humic-like substances comparable to those reported in continental aerosol.  相似文献   

20.
Nylon filters are a popular medium to collect atmospheric fine particles in different aerosol monitoring networks, including those operated by the U.S. Environmental Protection Agency and the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. Extraction of the filters by deionized water or by a basic aqueous solution (typically a mixture of sodium carbonate and sodium bicarbonate) is often performed to permit measurement of the inorganic ion content of the collected particles. Whereas previous studies have demonstrated the importance of using a basic solution to efficiently extract gaseous nitric acid collected using nylon filters, there has been a recent movement to the use of deionized water for extraction of particles collected on nylon filters to eliminate interference from sodium ion (Na+) during ion chromatographic analysis of inorganic aerosol cations. Results are reported here from a study designed to investigate the efficiency of deionized water extraction of aerosol nitrate (NO3-) and sulfate from nylon filters. Data were obtained through the conduct of five field experiments at selected IMPROVE sites. Results indicate that the nylon filters provide superior retention of collected fine particle NO3-, relative to Teflon filters, and that deionized water extraction (with ultrasonication) of collected NO3- and sulfate is as efficient, for the situations studied, as extraction using a basic solution of 1.7 mM sodium bicarbonate and 1.8 mM sodium carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号