首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.  相似文献   

2.
Aerosol samples were collected from Northwest China desert region (Minqin), coastal suburb (Qingdao) and interior of the Yellow Sea (Qianliyan) in spring and summer of 1995 and 1996. Samples were analysed for major components, carbon and sulphur. The results show that concentrations of aerosols change considerably in time and space. The crustal materials carried by cold front system increase notably the aerosol concentration (mass/unit vol.) over the Yellow Sea but reduce the percentage contribution of pollutants and sea-salt. The sea-salt and regional aerosols become dominant fractions in coastal atmosphere in summer when the dust storms are expired in source region and the Southeast monsoon starts in the Pacific Ocean.  相似文献   

3.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

4.
Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1- enrichment on the marine boundary layer prior to a dust front were also found. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for sector and air mass classifications of clean and LRT cases.  相似文献   

5.
Atmospheric input of fixed nitrogen species to the ocean has attracted considerable attention from the viewpoint of the oceanic biogeochemical cycle of nitrogen, although few measurements of organic nitrogen compounds in atmospheric aerosols have been extensively conducted over remote ocean areas. In this study, we report the geographical distribution of dissolved free amino acids (DFAA) in the water-soluble fraction of two size-segregated marine aerosols over the western North Pacific. The concentrations of DFAA showed higher values over the region north of 30°N, whereas they clearly decreased south of 30°N. Approximately 59–96% of DFAA was found in fine-mode particles. Long-range transport from continental sources could largely contribute to DFAA in marine aerosols over the remote North Pacific.  相似文献   

6.
We use a global chemical transport model (GEOS-Chem) to estimate the impact of transpacific transport of mineral dust on aerosol concentrations in North America during 2001. We have implemented two dust mobilization schemes in the model (GOCART and DEAD) and find that the best simulation of North American surface observations with GEOS-Chem is achieved by combining the topographic source used in GOCART with the entrainment scheme used in DEAD. This combination restricts dust emissions to year-round arid areas but includes a significant wind threshold for dust mobilization. The model captures the magnitude and seasonal cycle of observed surface dust concentrations over the northern Pacific. It simulates the free tropospheric outflow of dust from Asia observed in the TRACE-P and ACE-Asia aircraft campaigns of spring 2001. It reproduces the timing and distribution of Asian dust outbreaks in North America during April–May. Beyond these outbreaks we find persistent Asian fine dust (averaging 1.2 μg m−3) in surface air over the western United States in spring, with much weaker influence (0.25 μg m−3) in summer and fall. Asian influence over the eastern United States is 30–50% lower. We find that transpacific sources accounted for 41% of the worst dust days in the western United States in 2001.  相似文献   

7.
The geochemistry of PM10 filter samples collected at sea during the Scholar Ship Atlantic–Mediterranean 2008 research cruise reveals a constantly changing compositional mix of pollutants into the marine atmosphere. Source apportionment modelling using Positive Matrix Factorization identifies North African desert dust, sea spray, secondary inorganic aerosols, metalliferous carbon, and V–Ni-bearing combustion particles as the main PM10 factors/sources. The least contaminated samples show an upper continental crust composition (UCC)-normalised geochemistry influenced by seawater chemistry, with marked depletions in Rb, Th and the lighter lanthanoid elements, whereas the arrival of desert dust intrusions imposes a more upper crustal signature enriched in “geological” elements such as Si, Al, Ti, Rb, Li and Sc. Superimposed on these natural background aerosol loadings are anthropogenic metal aerosols (e.g. Cu, Zn, Pb, V, and Mn) which allow identification of pollution sources such as fossil fuel combustion, biomass burning, metalliferous industries, and urban–industrial ports. A particularly sensitive tracer is La/Ce, which rises in response to contamination from coastal FCC oil refineries. The Scholar Ship database allows us to recognise seaborne pollution sourced from NW Africa, the Cape Verde and Canary islands, and European cities and industrial complexes, plumes which in extreme cases can produce a downwind deterioration in marine air quality comparable to that seen in many cities, and can persist hundreds of kilometres from land.  相似文献   

8.
As a part of the effort to understand the structure of long-range transported aerosol plumes and local pollution, aerosol observations monitored the mass concentrations and number-size distributions during the period August 2006 to July 2009 near the top of Mt. Haruna (1365 m), an isolated mountain in the Kanto Plain in Japan. The mass concentrations observed at Mt. Haruna and plain sites showed a seasonal variation with a maximum in spring and summer, respectively. The spring peaks in aerosols at Mt. Haruna were probably caused by long-range transport of mineral dust and anthropogenic particles from the Asian continent. The summer peaks at the plain sites was attributed to local pollution from the Tokyo metropolitan area. Three examples of 2007 Asian dust events were investigated to show that aerosols may be dispersed in a complicated three-dimensional structure and that delayed arrivals of the dust plumes at plain sites compared to Mt. Haruna were not a rare case. Because of the boundary layer being stable at night, the dust layer was advected eastward without the vertical mixing before sunrise. This study suggests that after thermal convection activated by sunlight during daytime Asian dust transported in the free troposphere may be brought down into the atmospheric boundary layer, increasing the dust concentration there.  相似文献   

9.
Over a twelve year period from 1996 to 2007, 76 dust storm related events (as days) in Hong Kong were selected for study, based on Aluminium and Calcium concentrations in PM10. Four of the 76 events reach episodic levels with exceedances of the Hong Kong air quality standards. The purpose of the study is to identify and characterize dust sources impacting Hong Kong.Global distribution of aerosols in NASA’s daily aerosol index images from TOMS and OMI, are compared to plots generated by NRL(US)’s Navy Aerosol Analysis and Prediction System. Possible source areas are assigned by computing air parcel backward trajectories to Hong Kong using the NOAA HYSPLIT model. PM10 and elemental data are analyzed for crustal mass concentrations and element mass ratios.Our analysis reveals that 73 out of the 76 dust events (96%) involve non-East Asian sources-the Thar, Central/West Asian, Arabian and Sahara deserts (Saharan influence is found in 63 events), which are previously not known to affect Hong Kong. The Gobi desert is the most frequent origin of dust, affecting 68 dust events while the Taklamakan desert impacts only 30 of the dust events. The impact of the Gobi desert in March and December is apparently associated with the northeast monsoon in East Asia.Our results also show a seasonal pattern in dust impact from both East Asian and more remote sources, with a maximum in March. Dust event occurrences are conspicuously absent from summer. Dust transport to Hong Kong is commonly associated with the passage of frontal low-pressure systems.The coarse size fraction of PM10 concentrations were, as indicated by Al, Ca and Fe concentrations, about 4–8 times higher during dust events. The mean Ca/Al ratios of sources involving the Taklamakan desert are notably higher than those for non-East Asian sources owing to a higher Ca content of most of the East Asian deserts. The Fe/Al ratios follow a similar trend.Contributions from the desert sources are grossly estimated where possible, by using the average Al abundance of 8% in the upper continental crust to convert the Al mass in the PM10 to dust concentrations. This is done for the six events identified with air mass purely of non-East Asian origin and the two events related only to the Thar/Arabian/Sahara deserts. Results reveal that the average contribution from the non-East Asian sources (including C/W Asia) is approximately 10% and, that from the Thar/Arabian/Sahara deserts is about 8%.  相似文献   

10.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

11.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   

12.
Asian aerosols in elevated layers over the Pacific Ocean were sampled with NASA wire-impactors and a FSSP optical particle spectrometer-probe aboard the NASA DC-8 aircraft in early March 1994. Strong variations in aerosol properties, primarily aerosol concentration, lead to derived mid-visible extinctions between 0.003 and 0.5/km. FSSP data usually identified two size-modes. The larger ‘coarse mode’ (radii of 1–3 μm) was assumed to be dust. The composition of the smaller ‘accumulation mode’ (radii of 0.1–0.3 μm) was based on the analysis of the wire-impactor samples, as significant amounts of soot reduce mid-visible single scattering albedos to the 0.87–0.92 range.Radiative forcing simulations investigated the impact of Asian outflow aerosol on atmospheric radiative fluxes and heating rates. Only events with larger optical depths were important. In those events the solar attenuation of the smaller size mode dominated the net-flux losses at the surface, with values similar those of urban-polluted and/or biomass burning aerosol types (as observed during the TARFOX and INDOEX field experiments). In contrast, changes to net-fluxes at the top of the atmosphere (ToA) for outflow cases are less negative—primarily due to the added greenhouse effect of the dust component. For the climate of the Earth-Atmosphere-System, ToA net-flux losses are considered a cooling, ToA net-flux gains are associated with warming. Weak cooling is determined for the Asian outflow cases under cloud-free conditions. The addition of a reported 50% cloud cover below the aerosol layer causes a switch to slight warming.  相似文献   

13.
The link between the African Monsoon systems and aerosol loading in Africa is studied using multi-year satellite observations of UV-absorbing aerosols and rain gauge measurements.The main aerosol types occurring over Africa are desert dust and biomass burning aerosols, which are UV-absorbing. The abundance of these aerosols over Africa is characterised in this paper using residues and Absorbing Aerosol Index (AAI) data from Global Ozone Monitoring Experiment (GOME) on board ERS-2 and SCanning Imaging Absorption SpectroMeter for Atmospheric ChartograpHY (SCIAMACHY) on board Envisat.Time series of regionally averaged residues from 1995 to 2008 show the seasonal variations of aerosols in Africa. Zonally averaged daily residues over Africa are related to monthly mean precipitation data and show monsoon-controlled atmospheric aerosol loadings. A distinction is made between the West African Monsoon (WAM) and the East African Monsoon (EAM), which have different dynamics, mainly due to the asymmetric distribution of land masses around the equator in the west. The seasonal variation of the aerosol distribution is clearly linked to the seasonal cycle of the monsoonal wet and dry periods in both studied areas.The residue distribution over Africa shows two distinct modes, one associated with dry periods and one with wet periods. During dry periods the residue varies freely, due to aerosol emissions from deserts and biomass burning events. During wet periods the residue depends linearly on the amount of precipitation, due to scavenging of aerosols and the prevention of aerosol emissions from the wet surface. This is most clear over east Africa, where the sources and sinks of atmospheric aerosols are controlled directly by the local climate, i.e. monsoonal precipitation. Here, the wet mode has a mean residue of ?1.4 and the dry mode has a mean residue of ?0.3. During the wet modes a reduction of one residue unit for every 160 mm monthly averaged precipitation was found. Shielding effects due to cloud cover may also play a role in the reduction of the residue during wet periods.A possible influence of aerosols on the monsoon, via aerosol direct and indirect effects, is plausible, but cannot directly be deduced from these data.  相似文献   

14.
We used aerosol data from 4 sites along the west coast of the U.S. to evaluate the role of transport, seasonal pattern, chemical composition and possible trends in the marine background aerosol for the Pacific Northwest. For the Crater Lake samples, the data have been segregated using 10 day back isentropic trajectories to evaluate the role of transport. Our analysis of the segregated data indicates that the trajectories can successfully separate “locally influenced” from “marine background” aerosol, but are not able to identify a significant difference in the mean concentrations during marine vs Asian transport pathways.The background marine aerosol has an annual mean and median concentrations of 2.0 and 1.5 μg m−3, respectively, for particles less than 2.5 μm diameter. There is a seasonal pattern in all components of the aerosol mass, with a summer maximum and winter minimum. This pattern is most likely due to the strong seasonal pattern in precipitation, which peaks in winter, combined with enhanced sources in summer. The Crater Lake marine aerosol composition is dominated by organics (∼40% by mass), with smaller contributions from sulfates, mineral dust and elemental carbon. Analysis of the background marine aerosol found no apparent trend since 1988. This is in contrast to results reported by Prospero et al. (J. Geophys. Res. 108 (2003) 4019) for nss-SO42− samples from Midway Island in the North Pacific. Comparison of the mean concentrations for each site shows that the Midway samples are significantly more influenced by Asian industrial sources of sulfur, compared to Crater Lake, which implies a substantial loss of nss-SO42− from Asian sources that occurs during transit across the Pacific to Crater Lake due to precipitation scavenging.  相似文献   

15.
Tropical cyclones are prominent weather systems characterized by high atmospheric pressure gradients and wind speeds. Intense tropical cyclones occur in India during the pre-monsoon (spring), early monsoon (early summer), or post-monsoon (fall) periods. Originating in both the Bay of Bengal (BoB) and the Arabian Sea (AS), these tropical cyclones often attain velocities of more than 100 km h?1 and are notorious for causing intense rain and storm surge as they cross the Indian coast. In this study, we examine the changes in the aerosol properties associated with an intense tropical cyclone “SIDR”, that occurred during 11–16 November 2007 over BoB. This cyclone, accompanied with very strong surface winds reaching 223 km h?1, caused extensive damage over Bangladesh. Ground-based measurements of Aerosol Optical Depth (AOD) in the neighboring urban environment of Hyderabad, India, showed significant variations due to changes in wind velocity and direction associated with the cyclone passage. The Terra-MODIS and AVHRR satellite images showed prevalence of dust particles mixed with emissions from anthropogenic sources and biomass-burning AS, while the aerosol loading over BoB was significantly lower. The positive values of Aerosol index (AI) obtained from the Ozone Monitoring Instrument (OMI) suggested the presence of an elevated aerosol layer over the West coast of India, AS and Thar Desert during and after the cyclone episode. Meteorological parameters from the MM5 mesoscale model were used to study the variations in winds associated with the cyclonic activity. Particulate matter loading over the region during the cyclone period increased by ~45% with an accompanying decrease in columnar aerosol optical depth. The variations in Angstrom parameters suggested coarse-mode particle loading due to dust aerosols as observed in satellite data.  相似文献   

16.
17.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

18.
Size-resolved particle composition, mass and number concentrations, aerosol scattering coefficients, and prevailing meteorological conditions were measured at the Ellen Browning Scripps Memorial Pier located in La Jolla, California on 15 December 1998. Aerosol particles were sampled using a field transportable aerosol time-of-flight mass spectrometer, allowing for the continuous detection and characterization of single particles from a polydisperse sample. An extensive and rapid change in the chemical composition of aerosol particles with aerodynamic diameters between 1.0 and 2.5 μm has been observed during the onset of a Santa Ana Winds condition. Coincident with the observed change in meteorological conditions, a substantial decrease in sea salt particles corresponds to an increase in dust and carbon-containing particles. This paper examines observations of the rapid changes occurring in the chemical composition of single aerosol particles and demonstrates the new types of information that can be obtained by measuring single particle size and composition with high temporal resolution.  相似文献   

19.
A TDMA system (Tandem Differential Mobility Analyzer; Rader D.J. and McMurry P.H. J. Aerosol Sci. 17, 771–787, 1986) was used to measure the sensitivity of particle size to relative humidity for monodisperse Los Angeles aerosols. Measurements were made at Claremont, CA on 13 days between 19 June and 3 September 1987, in conjunction with the Southern California Air Quality Study (SCAQS). The particle sizes that were studied ranged from 0.05 μm to 0.5 μm diameter at ambient relative humidity (typically 45–65%).The data provide clear evidence that these atmospheric aerosols were externally mixed. Monodisperse ambient aerosols were often found to split into nonhygroscopic (no water uptake) and hygroscopic portions when humidified. An average of 30% of the particles in the 0.2–0.5 μm range were nonhygroscopic. However, the proportion of the particles that was nonhygroscopic varied considerably from day to day and was, on occasion, as high as 70–80% of the particles. There was no clear evidence for nonhygroscopic 0.05 μm particles, but the data are not definitive on this point.The data also show that for the hydrophilic aerosol fraction, the larger particles (0.4–0.5 μm) grew more when humidified than did smaller particles (0.05–0.2 μm). As relative humidities were increased from 50% to 90%, particle diameters grew by average factors of 1.46 ±0.02 (for 0.5 μm particles), 1.49 ± 0.08 (0.4 μm), 1.19 ± 0.08 (0.2 μm) and 1.12 ± 0.05 (0.05 μm). Similarly, when particles were dried from 50% RH to 6–10% RH, particle diameters changed by factors ranging from 0.94 ± 0.03 (0.5 μm) to 0.98 ± 0.01 (0.05 μm).  相似文献   

20.
Iron (Fe) and other trace elements such as Zn, Mn, Ni and Cu are known as key-factors in marine biogeochemical cycles. It is believed that ocean primary productivity blooms in iron deficient regions can be triggered by iron in aeolian dust. Up to now, scarce aerosol elemental composition, based on measurements over sea at the Western South Atlantic (WSA), exist. An association between the Patagonian semi-desert dust/Fe and chlorophyll-a variability at the Argentinean continental shelf is essentially inferred from models. We present here experimental data of Fe enriched aerosols over the WSA between latitudes 22°S–62°S, during 4 oceanographic campaigns between 2002 and 2005. These data allowed inferring the atmospheric Fe flux onto different latitudinal bands which varied from 30.4 to 1688 nmolFe m?2 day?1 (October 29th–November 15th, 2003); 5.83–1586 nmolFe m?2 day?1 (February 15th–March 6th, 2004) and 4.73–586 nmolFe m?2 day?1(October 21st–November 5th, 2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号