首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以公交车为例,利用OBS-2200和ELPI(electrical low pressure impactor)对深圳市重型柴油车(high-duty diesel vehicles,HDDVs)进行了3次在实际道路上的车载排放测试.根据测试数据计算了NOx和PM排放因子及百公里油耗,并分析了不同道路、不同工况对NOx...  相似文献   

2.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

3.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   

4.
Abstract

A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet’s carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.  相似文献   

5.
Abstract

Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted [~20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted ~35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idleCO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by ~100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75%of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

6.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

7.
Trends in vehicular emissions in China's mega cities from 1995 to 2005   总被引:1,自引:0,他引:1  
Multiyear inventories of vehicular emissions in Beijing, Shanghai and Guangzhou from 1995 through 2005 have been developed in this paper to study the vehicle emissions trends in China's mega cities during the past decade. The results show that the vehicular emissions of CO, HC, NOx and PM10 have begun to slow their growth rates and perhaps even to decline in recent years due to the implementation of measures to control vehicular emissions in these cities. However, vehicular CO2 emissions have substantially increased and still continue to grow due to little fuel economy improvement. Passenger cars and large vehicles (including heavy duty trucks and buses) are the major sources of vehicular CO2 and CO emissions while large vehicles were responsible for nearly 70% and 80% of the vehicular NOx and PM10 emissions in these mega cities. Motorcycles are also important contributors to vehicular emissions in Guangzhou and Shanghai.  相似文献   

8.
ABSTRACT

A 1999 ordinance by the Government of Mexico City bans 1993 model-year vehicles from on-road operation if their catalytic converters are not replaced with new ones. To validate the benefits of this action, we examined three issues related to exhaust emissions of vehicles equipped with catalytic converters. After selecting representative fleets of in-use vehicles, a comparison between emissions and catalyst efficiency in cars with two categories of exhaust emission limits was carried out. For that purpose, two fleets were selected, each made up of 10 vehicles run under similar conditions. A third, larger fleet with emissions control systems was used to evaluate and simulate real-world conditions of vehicles in a controlled laboratory. Finally, the aging effect on the catalytic converter was studied on vehicles run for 100,000 km, replacing their old emission control devices for new ones.

The 1991-1992 model-year vehicles showed a high percentage of compliance with the corresponding emissions standard (90%) in comparison with 1993 model-year and later vehicles (Tier 0). However, NOx emissions were higher for the newer vehicles. Fifty percent of the 1991-1992 model-year vehicles evaluated under the official inspection/maintenance (I/M) procedure did not meet the regulated emissions standard when the results were compared with those of the U.S. Federal Test Procedure  相似文献   

9.
The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number, and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC??50 and??70 °CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

Implications: NOx and particle emissions are dominant emissions of diesel engines and vehicles. New, biobased paraffinic fuels and modern engine technologies have been reported to lower both of these emissions. In this study, even further reductions were achieved with engine valve adjustment combined with novel hydrotreated vegetable oil (HVO) diesel fuel. This study shows that new paraffinic fuels offer further possibilities to reduce engine exhaust emissions to meet the future emission limits.

Supplementary Materials: Supplementary materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a complete list of analysed PAH compounds.  相似文献   

10.
Within the European research project ARTEMIS, significant works have been conducted to analyse the hot emissions of pollutant from the passenger cars regarding the driving cycles and to propose modelling approaches taking into account large but heterogeneous datasets recorded in Europe. The review and analysis of a large range of test cycles enabled first the building-up of a set of contrasted cycles specifically designed for characterizing the influence of the driving conditions. These cycles were used for the measurement of the pollutants emission rates from nine passenger cars on a chassis dynamometer.Emissions measured on 30 vehicles tested on cycles adapted to their motorization (i.e., cycles for high- or low-powered cars, inducing thus a significant difference in the dynamic) were also considered for analysing the influence of the cycles and of the kinematic parameters on the hot emission rates of the regulated pollutants (CO, HC, NOx, CO2, PM). An analyses of variance demonstrated the preponderance of the driving type (urban, rural road, motorway), of the vehicle category (fuel, emission standard) and emitting status (high/normal emitter) and thus the pertinence of analysing and modelling separately the corresponding emissions. It also demonstrated that Urban driving led systematically to high diesel emission rates and to high CO2, HC and NOx emissions from petrol cars. Congested driving implied high CO2 (diesel and petrol) and high diesel NOx emission. On motorway, the very high speeds generated high CO2, while unsteady speeds induced diesel NOx and petrol CO over-emissions. A search for pertinent kinematic parameters showed that urban diesel emissions were mostly sensitive to stops and speed parameters, while petrol emissions were rather sensitive to acceleration parameters. On the motorway, diesel NOx and CO2 emissions rates increased with the speed variability and occurrence of high speeds, while CO2 and CO over-emission from petrol cars were linked to the occurrence of strong acceleration at high speeds.A modelling approach based on partial least square regression was tested, which demonstrates its ability to discriminate satisfactorily the emissions according to dynamic related parameters and in particular when considering the two-dimensionnal distribution of instantaneous speed and acceleration.Finally, a strategy was proposed to analyse the large but heterogeneous set of hot emission data collected within the ARTEMIS project. The approach consisted in analysing the similarity of the numerous cycles as regards their kinematic, grouping them into reference test patterns through an automatic clustering, and then computing reference emissions for these patterns. These principles enabled the development of a method to compute the emissions at a low spatial scale, i.e. the so-called traffic situation approach, which was implemented in the European Artemis model for estimating the cars’ pollutant emissions.  相似文献   

11.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   

12.
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

Implications:?Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds.  相似文献   

13.
Tailpipe and evaporative emissions from three pre-1985 passenger motor vehicles operating on an oxygenated blend fuel and on a nonoxygenated base fuel were characterized. Emission data were collected for vehicles operating over the Federal Test Procedure at 40,75, and 90°F to simulate ambient driving conditions. The two fuels tested were a commercial summer grade regular gasoline (the nonoxygenated base fuel) and an oxygenated fuel containing 9.5 percent methyl tert-butyl ether (MTBE), more olefins, and fewer aromatics than the base fuel. The emissions measured were total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene.

This study showed no pattern of tailpipe regulated emission reduction when oxygenated fuel was used. Tailpipe emissions from the 1984 Buick Century without a catalyst and the 1977 Mustang with catalyst decreased with the MTBE fuel. However, emissions from the 1984 Buick Century and the 1980 Chevrolet Citation, both fitted with catalysts increased. The vehicles emitted more 1,3- butadiene and, in general, more NOx when operated with the base fuel.

THC, CO, benzene, and 1,3-butadiene emissions from both fuels and all vehicles, in general, decreased with increasing test temperature, whereas NOx emissions, in general, increased with increasing test temperature. Formaldehyde, acetaldehyde, and total aldehydes also showed a decrease in emissions as test temperature increased. More formaldehyde was emitted when the MTBE fuel was used.

Evaporative, diurnal, and hot soak emissions from the base fuel were greater than those from the MTBE fuel. The evaporated emissions from both fuels increased with increasing test temperatures. Diurnal data indicate that canister conditioning (bringing the evaporative charcoal canister to equilibrium) is required before testing.  相似文献   

14.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors.
Implications:Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.  相似文献   

15.
ABSTRACT

This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/ sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.  相似文献   

16.
The emission profile of volatile organic compounds (VOC) and the ozone-forming potential (OP) of the exhaust gas of six in-use motorcycles (four 4-stroke- and two 2-stroke-engines) were determined. The motorcycles were tested on a chassis dynamometer in a real-world driving cycle. The analysis involved the C2–C12-hydrocarbons as well as the aldehydes and ketones. Additionally, the regulated THC and NOx emissions were measured according to the test procedure for type approval (ECE 40). Two vehicles did not fulfil the THC emission standard, whereas all vehicles met the requirements for NOx emission. The aromatic fuel components toluene and xylene, and the combustion products ethene and propene contributed most to the OP of the VOC emission. The highest OP was found with the 2-stroke engines. The VOC profile of the emissions varied with vehicle and driving conditions. The reactivity of the exhaust gas, defined as gram ozone per gram of non-methane organic gases (NMOG), increased with vehicle speed.  相似文献   

17.
The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol – 90/10%, diesel/ethanol/soybean biodiesel – 80/15/5%, diesel/ethanol/castor biodiesel – 80/15/5%, diesel/ethanol/residual biodiesel – 80/15/5%, diesel/ethanol/soybean oil – 90/7/3%, and diesel/ethanol/castor oil – 90/7/3%. The diesel/ethanol fuel showed higher reduction of NOx emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NOx emissions in the ranges of 6.9–75% and 4–85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NOx emission. In the case of CO2 the decreases were in the ranges of 5–24% and 4–6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde, butanone, benzaldehyde, isovaleraldehyde, valeraldehyde, o-toluenaldehyde, m-toluenaldehyde, p-toluenaldehyde, hexaldehyde, octaldehyde, 2,5-dimethylbenzaldehyde, and decaldehyde. Among them, formaldehyde, acetaldehyde, acetone, and propionaldehyde showed the highest emission concentrations. When ternary blend contains vegetable oil, there is a strong tendency to increase the emissions of the high weight CC and decrease the emissions of the low weight CC. The highest concentration of acrolein was observed when the fuel contains diesel, ethanol and biodiesel. With the exception of NOx, the use of ternary blended fuels resulted on the increase in the emission rates of the studied compounds.  相似文献   

18.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   

19.
On-road comparisons were made between a mobile emissions laboratory (MEL) meeting federal standards and a portable emissions measurement system (PEMS). These comparisons were made over different conditions; including road grade, vibration, altitude, electric fields, and humidity with the PEMS mounted inside and outside of the tractor's cab. Brake-specific emissions were calculated to explore error differences between the MEL and PEMS during the Not-To-Exceed (NTE) engine operating zone. The PEMS brake-specific NOx (bsNOx) NTE emissions were biased high relative to the MEL and, in general, were about 8% of the 2007 in-use NTE NOx standard of 2.68 g kW?1 h?1 (2.0 g hp?1 h?1). The bsCO2 emissions for the PEMS were also consistently biased high relative to the MEL, with an average deviation of +4% ± 2%. NMHC and CO emissions were very low and typically less than 1% of the NTE threshold. This research was part of a comprehensive program to determine the “allowance” when PEMS are used for in-use compliance testing of heavy-duty diesel vehicles (HDDVs).  相似文献   

20.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号