首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The characteristics of Aerosol Optical Depth (AOD) and Angstrom exponent were analyzed and compared using Cimel sunphotometer data from 2007 to 2008 at five sites located in the Yangtze River Delta region of China. The simultaneous measurements between Lin’an and ZFU showed a very high consistency of AOD at all wavelengths. The differences are less than 0.02 for Angstrom exponent and AOD at all wavelengths. The mean values of AOD at 440 nm at the Pudong, Taihu and Lin’an were about 0.74 ± 0.43, 0.85 ± 0.46, and 0.89 ± 0.46, respectively. The mean values of Angstrom exponents were about 1.27 ± 0.30, 1.20 ± 0.28 and 1.32 ± 0.35, respectively. The variation of monthly averaged AOD over Pudong showed a single peak distribution, with the maximum value occurring in July (AOD440nm 1.26 ± 0.61) and minimum in January (AOD440nm 0.50 ± 0.27). However, the variations of monthly averaged AOD at Taihu and Lin’an showed a bi-modal distribution. There were peak values of AOD occurring in July (AOD440nm 1.41 ± 0.49) and September (AOD440nm 1.22 ± 0.52) for Taihu. For Lin’an, the two peak values of AOD occurred in June (AOD440nm 1.17 ± 0.69) and September (AOD440nm 1.28 ± 0.46). The AOD accumulated mainly between 0.30–0.90(68%), 0.30–1.20(75%) and 0.30–1.20 (~75%) at Pudong, Taihu, and Lin’an, respectively. The Angstrom exponent accumulated mainly between 1.10–1.60 (75%), 1.10–1.50 (63%) and 1.20–1.60, 50% (50%) at Pudong, Taihu, and Lin’an, respectively.The synchronized observation showed that the AOD at Pudong was larger than those at Dongtan by 0.03, 0.03, 0.04, 0.07, and 0.08 at wavelengths of 1020 nm, 870 nm, 670 nm, 500 nm and 440 nm, respectively. The synchronized observations at Pudong, Taihu and Lin’an showed that the three stations had high level AOD with means at 440 nm about 0.68, 0.73, and 0.78, respectively. The relationship between MODIS retrieved and ground-based measured AOD shows good agreement with R2 ranging from 0.68 to 0.79 at Pudong, Taihu, Lin’an and Dongtan. The MODIS results were overestimated comparing the ground measurements at Pudong, Taihu, and Dongtan but exceptional at Lin’an.The analysis results between aerosol optical properties and wind measurement at Pudong showed that the wind speed from the east correlates with the lower observed AOD. The back trajectory analysis indicates that more than 50% airmasses were from the marine area at Pudong, while back trajectories distribution is relatively homogeneous at Lin’an.  相似文献   

2.
Aerosol optical properties from 2005 to 2008 at the Longfengshan regional background station in Northeast China were measured and analyzed. The annual mean of aerosol optical depth (AOD) at 440 nm for the four years was about 0.27 ± 0.25, 0.39 ± 0.37, 0.35 ± 0.34, and 0.38 ± 0.38, respectively, and the corresponding annual mean for the Angstrom exponent between 440 nm and 870 nm was about 1.43 ± 0.48, 1.23 ± 0.37, 1.53 ± 0.47, and 1.55 ± 0.42. The average monthly AOD440nm showed similar seasonal variation with a maximum in spring and a minimum in autumn. The monthly means of AOD at 440, 675, 870 and 1020 nm increase from the January to March with the maxima about 0.77 ± 0.04, 0.65 ± 0.04, 0.58 ± 0.06, 0.57 ± 0.07, respectively and decrease from September to February with the minima about 0.32 ± 0.12, 0.22 ± 0.09, 0.15 ± 0.08, and 0.13 ± 0.07 in January. The monthly mean of Angstrom exponent shows a minimum in March (0.97 ± 0.52) and a maximum in September (1.66 ± 0.29). Both the AOD and Angstrom exponent presents single peak distributions of occurrence frequencies. The Longfenshan data showed high AODs (>1.00) both clustering in the fine mode growth wing and the coarse mode. Two typical cases under dust and haze conditions showed that the AOD under dusty day decreased from 2.20 to 1.20 and the Angstrom exponent increased from 0.10 to 1.00. On the contrast, the AOD under haze day remained relatively stable about 0.90 and the Angstrom exponent was around 1.40. The 3-day backtrajectory analysis at Longfengshan illustrated that the air-masses near ground on the dust day were from Bohai Sea and passed through Liaodong Peninsula and Northeast plain in China. But the air-masses on 500 m AGL were originated from western Mongolia and crossed Gobi deserts, Otindag Sand Land and Horqin Sand Land in Northeast China. The air-masses at Longfengshan near ground 500 m and 1000 m AGL on the haze days were from North China Region and passed through Northeast Heavy Industrial Base in Northeast China.  相似文献   

3.
The rate and mechanism for gas-phase destruction of hydroxyacetone, CH3C(O)CH2OH, by reaction with OH, Cl-atoms, and by photolysis have been determined. The first quantitative UV absorption spectrum of hydroxyacetone is reported over the wavelength range 235 to 340 nm; the spectrum is blue-shifted by about 15 nm relative to that of acetone and peaks at 266 nm, with a maximum absorption cross section of (6.7±0.6) ×10-20 cm2 molecule-1. Measurable absorption extends out to about 330 nm. The quantum yield for photolysis of hydroxyacetone in the region relevant to the troposphere (λ>290 nm) was found to be significantly less than unity. Rate coefficients for the reaction of hydroxyacetone with OH radicals and Cl-atoms were determined at 298 K using the relative rate technique. The rate coefficient for reaction with OH was found to be (3.0±0.7)×10-12 cm3 molecule-1 s-1, while the rate coefficient for reaction with Cl-atoms was found to be (5.6±0.7)×10-11 cm3 molecule-1 s-1. Both values agree well with previous studies. The data were used to determine the lifetime of hydroxyacetone in the troposphere. Reaction with OH is the major gas-phase destruction mechanism for this compound, limiting its lifetime to about 4 days, while photolysis is found to be only of minor importance.  相似文献   

4.
A highly sensitive cavity ring-down spectrometer (CRDS) was used to monitor the aerosol extinction coefficient at 532 nm. The performance of the spectrometer was evaluated using measurements of nearly monodisperse polystyrene particles with diameters between 150 and 500 nm. By comparing the observed results with those determined using Mie theory, the accuracy of the CRDS instrument was determined to be >97%, while the upper limit for the precision of the instrument was estimated to be 0.6–3.5% (typically 2%), depending on the particle number concentration, which was in the range of 30–2300 particles cm?3. Simultaneous measurements of the extinction (bext), scattering (bsca) and absorption (babs) coefficients of ambient aerosols were performed in central Tokyo from 14 August to 2 September 2007 using the CRDS instrument, two nephelometers and a particle/soot absorption photometer (PSAP), respectively. The value of bext measured using the CRDS instrument was compared with the sum of the bsca and babs values measured with a nephelometer and a PSAP, respectively. Good agreement between the bext and bsca + babs values was obtained except for data on days when high ozone mixing ratios (>130 ppbv) were observed. During the high-O3 days, the values for bsca + babs were ~7% larger than the value for bext, possibly because the value for babs measured by the PSAP was overestimated due to interference from coexisting non-absorbing aerosols such as secondary organic aerosols.  相似文献   

5.
The light extinction and direct forcing properties of the atmospheric aerosol were investigated for a midwestern rural site (Bondville, IL) using field measurements, a semi-empirical light extinction model, and a radiative transfer code. Model inputs were based on the site measurements of the physical and chemical characteristics of atmospheric aerosol during the spring, summer, fall and winter of 1994. The light scattering and extinction coefficients were calculated and apportioned using the elastic light scattering interactive efficiency (ELSIE) model (Sloane and Wolff, 1985, Atmospheric Environment 19(4), 669–680). The average efficiencies calculated for organic carbon (OC, carbon measured as organic multiplied by 1.2) ranged from 3.81 m2/g OC at lower relative humidities (<63%) to 6.90 m2/g OC at higher relative humidities (>75%) while sulfate (assumed as ammonium sulfate) efficiencies ranged from 1.23 m2/g (NH4)2SO4 to 5.78 m2/g (NH4)2SO4 for the same range of relative humidities. Radiative transfer calculations showed that the rural aerosol at Bondville is most likely to have an overall negative (cooling) forcing effect on climate. Elemental carbon (EC), however, acts to counter sulfate forcing to a degree that has a significant seasonal variation, primarily due to the seasonal variation in the sulfate concentrations. Taking the loading to be the mean summer EC+ammonium sulfate loading and assuming [EC]/[(NH4)2SO4] to be zero in one case (i.e. no soot present) and 0.025 (summer mean at Bondville) in another leads to a 37% difference in calculated forcing.  相似文献   

6.
During the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study, conducted during the spring and summer of 2006, a suite of instruments located near the eastern boundary of Rocky Mountain National Park (RMNP) measured aerosol physical, chemical and optical properties. Three instruments, a differential mobility particle sizer (DMPS), an optical particle counter (OPC), and an aerodynamic particle sizer (APS), measured aerosol size distributions. Aerosols were sampled by an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampler and a URG denuder/filter-pack system for compositional analysis. An Optec integrating nephelometer measured aerosol light scattering. The spring time period had lower aerosol concentrations, with an average volume concentration of 2.2 ± 2.6 μm3 cm?3 compared to 6.5 ± 3.9 μm3 cm?3 in the summer. During the spring, soil was the single largest constituent of PM2.5 mass, accounting for 32%. During the summer, organic carbon accounted for 60% of the PM2.5 mass. Sulfates and nitrates had higher fractional contributions in the spring than the summer. Variability in aerosol number and volume concentrations and in composition was greater in the spring than in the summer, reflecting differing meteorological conditions. Aerosol scattering coefficients (bsp) measured by the nephelometer compared well with those calculated from Mie theory using size distributions, composition data and modeled RH dependent water contents.  相似文献   

7.
Rapid mapping of gas concentrations in air benefits studies of atmospheric phenomena ranging from pollutant dispersion to surface layer meteorology. Here we demonstrate a technique that combines multiple-open-path tunable-diode-laser spectroscopy and computed tomography to map tracer gas concentrations with approximately 0.5 m spatial and 7 s temporal resolution. Releasing CH4 as a tracer gas in a large (7 m×9 m×11 m high) ventilated chamber, we measured path-integrated CH4 concentrations over a planar array of 28 “long” (2–10 m) optical paths, recording a complete sequence of measurements every 7 s during the course of hour-long experiments. Maps of CH4 concentration were reconstructed from the long path data using a computed tomography algorithm that employed simulated annealing to search for a best fit solution. The reconstructed maps were compared with simultaneous measurements from 28 “short” (0.5 m) optical paths located in the same measurement plane. On average, the reconstructed maps capture ∼74% of the variance in the short path measurements. The accuracy of the reconstructed maps is limited, in large part, by the number of optical paths and the time required for the measurement. Straightforward enhancements to the instrumentation will allow rapid mapping of three-dimensional gas concentrations in indoor and outdoor air, with sub-second temporal resolution.  相似文献   

8.
The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190–1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300–500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96–75 wt% H2SO4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of −(70±15) kJ mol−1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H2SO4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10−4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.  相似文献   

9.
Formation of photochemical air pollution is governed in part by the solar ultraviolet actinic radiation flux, but wavelength-resolved measurements of UV radiation in polluted urban atmospheres are rarely available. As part of the 1997 Southern California Ozone Study, cosine weighted solar irradiance was measured continuously at seven UV wavelengths (300, 306, 312, 318, 326, 333 and 368 nm) at two sites during the period 1 July to 1 November 1997. The first site was at Riverside (260 m a.s.l.) in the Los Angeles metropolitan area, which frequently experiences severe air pollution episodes. The second site was at Mt Wilson (1725 m a.s.l.), approximately 70 km northwest of Riverside, and located above much of the urban haze layer. Measurements of direct (i.e., total minus diffuse) solar irradiance were used to compute total atmospheric optical depths. At 300 nm, optical depths (mean±1 S.D.) measured over the entire study period were 4.3±0.3 at Riverside and 3.7±0.2 at Mt Wilson. Optical depth decreased with increasing wavelength, falling at 368 nm to values of 0.8±0.2 at Riverside and 0.5±0.1 at Mt Wilson. At all wavelengths, both the mean and the relative standard deviation of optical depths were larger at Riverside than at Mt Wilson. At 300 nm, the difference between the smallest and largest observed optical depths corresponds to over a factor 2 increase in the direct beam irradiance for overhead sun, and over a factor 7 increase for a solar zenith angle of 60°. Principal component analysis was used to reveal underlying factors contributing to variability in optical depths. PCA showed that a single factor (component) was responsible for the major part of the variability. At Riverside, the first component was responsible for 97% of the variability and the second component for 2%. At Mt Wilson, 89% of the variability could be attributed to the first component and 10% to the second. Dependence of the component contributions on wavelength allowed identification of probable physical causes: the first component is linked to light scattering and absorption by atmospheric aerosols, and the second component is linked to light absorption by ozone. These factors are expected to contribute to temporal and spatial variability in solar actinic flux and photodissociation rates of species including ozone, nitrogen dioxide, and formaldehyde.  相似文献   

10.
A photoacoustic spectrometer has been developed to measure in situ light absorption by aerosol. The measured quantity is the sound pressure produced in an acoustic resonator caused by light absorption. The current lower detection limit for light absorption is 0.4 Mm-1 which corresponds to an elemental carbon mass density of ≈40 ng m-3 assuming an efficiency for light absorption of 10 m2 g-1. Calibration is performed using simple theory for the instrument along with use of a calibrated microphone and laser. The acoustic resonator is operated in the plane wave mode, which has a quality factor of ≈80, a resonance frequency of ≈500 Hz, and a photoacoustic coefficient of 12.8 Pa (W m-1)-1. The equivalent noise bandwidth of the resonator is ≈5 Hz. Coherent acoustic noise was supressed through the use of acoustic notch filters and laser beam ports at pressure nodes of the resonator. The relatively low-quality factor made it possible to use phase-sensitive detection having an equivalent noise bandwidth of ≈7.5 mHz. This was achieved by vector time averaging the microphone signal for ≈8 min. Two compact, efficient lasers were used during instrument evaluation performed in the Northern Front Range Air Quality Study (Colorado, 1996/97). One was a laser diode pumped, frequency doubled, solid state laser, and the other was a laser diode. Laser wavelengths were 532 nm and 685 nm, and corresponding average powers were 60 and 87 nW. Some examples are provided for light absorption measurements using the photoacoustic instrument and a nearby aethalometer.  相似文献   

11.
The optical properties (extinction-to-backscatter ratio, backscattering, depolarization, and backscatter-related Angstrom exponent) and height distribution of Asian dusts were measured using a two-wavelength Raman/depolarization lidar at Taipei, Taiwan, during the Asian dust seasons in 2004 and 2005. Dust layers were frequently observed in the free atmosphere (1–6 km). Dust optical thickness ranged from 0.01 to 0.55; backscatter-related Angstrom exponents ranged from 0.42 to 1.47; and lidar ratios (extinction-to-backscatter ratio) for 355 nm ranged from 32 to 72 sr (steradian). The mean values of dust particle depolarization and extinction coefficient are 14±6% and 0.16km-1, respectively, which are close to the moderate dust depolarizations and extinctions observed in free atmosphere in China and Japan. Backscatter-related Angstrom exponents were found correlated positively with lidar ratio and negatively with particle depolarization, indicating that the dust optical characteristics are predominated by size distribution. Dusts were found to tend to exhibit unusual low depolarization properties under moist conditions (relative humidity RH>70%), and the possible explanations are discussed.  相似文献   

12.
A new optical transmission technique for black carbon (BC) analysis was developed to minimize interferences due to scattering effects in filter samples. A standard thermal analysis method (VDI, 1999) is used to link light attenuation by the filter samples to elemental carbon (EC) concentration. Scattering effects are minimized by immersion of the filters in oil of a similar refractive index, as is often done for microscopy purposes. Light attenuation was measured using both a white light source and a red LED of 650 nm. The usual increase in overestimation of BC concentrations with decreasing BC amount in filter samples was found considerably reduced. Some effects of BC properties (e.g. fractal dimension, microstructure and size distribution) on the specific attenuation coefficient BATN, however, are still present for the treated samples. BATN was found close to 1 m2 g−1 for dry-dispersed industrial BC and 7 m2 g−1 for nebulized BC. Good agreement was found between the oil immersion, integrating sphere and a polar photometer technique and Mie calculations. The average specific attenuation coefficient of ambient samples in oil varied between 7 and 11 m2 g−1 for white light and 6 and 9 m2 g−1 for red light (LED). BATN was found to have much less site variation for the treated than for the untreated samples. The oil immersion technique improved also the correlation with thermally analyzed EC. This new immersion technique therefore presents a considerable improvement over conventional optical transmission techniques and may therefore serve as a simple, fast and cost-effective alternative to thermal methods.  相似文献   

13.
For continuous monitoring of atmospheric visibility in the city of Kwangju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwangju, Korea. At the transmitter site a nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. Unusually high number of Yellow Sand events had occurred in the Northeast Asia during the spring of 2000. Visibility in Kwangju under such conditions was greatly impaired over large area for a few days. In order to investigate the effects of Yellow Sand on visibility impairment, chemical and elemental analyses of aerosol samples were performed along with the optical measurement of visibility. Hourly averaged visual range decreased from 61.7 to 1.9 km when hourly averaged concentration of PM10 varied from 32.9 to 601.8 μg/m3 during Yellow Sand periods. Fine particulate (<2.5 μm) concentrations were relatively lower than coarse particulate matters. Results of the data analyses show that mineral dusts originated from continental sources were simultaneously transported along with anthropogenic sulfate aerosols and marine aerosols. Total light extinction coefficient, bext, proposed by the IMPROVE network showed poor correlation with bext measured by transmissometer. Coarse mass scattering efficiency was classified into three categories; ENHSOc, Emineral, and Esea-salt, which were determined as ammonium sulfate combined with nss-sulfate of 1.0, sea-salt of 0.4, and mineral of 0.77 m2/g, respectively. Mass fraction of NHSOc, sea-salt, and mineral dust was 0.20, 0.14, and 0.66, respectively.  相似文献   

14.
The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from off-line calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99%. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 and 4 μm. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest single scattering albedo. A similar treatment was done for aerosols from biomass burning. In this case, two size distributions were considered. One was based on a distribution measured for Northern Hemisphere temperate forest fires while the second was based on a measured size distribution for tropical fires. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and band averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction. These optical properties result in global average forcing from anthropogenic sulfate aerosols of −0.81 Wm-2. The global average forcing for biomass aerosols ranged from −0.23 to −0.25 Wm-2 depending on the assumed size distribution, while fossil fuel organic and black carbon are estimated to heat the atmosphere by about 0.16 Wm-2.  相似文献   

15.
In order to understand the influence of dust and anthropogenic pollution aerosols on regional climate in East Asia, we analyzed the aerosol optical, chemical and physical properties for two cases with high aerosol loading and assessed the radiative forcing of these cases. The 1st case study is a heavy dust episode (DE) in April (during ACE-Asia) 2001 and the 2nd case is a regional-scale pollution event in November 2001. The Ångström exponent (Å) for DE was 0.38 from sunphotometer measurements. The mean single scattering albedo (550 nm) at the surface reported during the pollution episode (PE, 0.88) was lower than that of DE (0.91). The concentrations of organic (OC) and elemental carbon (EC) measured during the PE were about 90% and 30% higher than DE. The aerosol mass scattering efficiency (αs) of PE is a factor of about 2 higher than that of the DE. The difference in the mass absorption efficiency (αa) of EC during DE and PE is small and within the measurement uncertainty. The diurnally averaged aerosol radiative forcing efficiency (ΔDFE, W m−2 τ1) during DE is similar to results of other studies at Gosan.  相似文献   

16.
The infrared spectrum of HCF2OCF2OCF2CF2OCF2H (CAS# 188690-77-9) has been re-measured. The integrated absorption intensity over the range 1000–1500 cm?1 measured in the present work is (6.65 ± 0.33) × 10?17 cm2 molecule?1 cm?1 in 700 Torr of air at 296 K. The radiative efficiency of HCF2OCF2OCF2CF2OCF2H is calculated to be 1.02 W m?2 ppb?1. The value reported in the 2007 Intergovernmental Panel on Climate Change (IPCC) report is approximately 35% larger reflecting what we believe to be an erroneously high value for the absorption strength of HCF2OCF2OCF2CF2OCF2H adopted by the IPCC.  相似文献   

17.
From 1 May to 25 May 2001, the BAB II campaign was carried out at the motorway BAB (656) near Heidelberg. Atmospheric concentrations of particulate matter and gases were measured together with the meteorological conditions. This paper is focused on the particulate matter measured upwind and downwind from the motorway at ground level. In order to determine the source contribution from the motorway traffic, it was necessary to measure upwind and downwind simultaneously due to variations in background concentrations. The particle number contribution from the motorway was found to be 35,000 particles cm−3 for particles with diameters close to 20 nm and 5000 particles cm−3 for particles with diameters close to 70 nm. Bimodal size distributions were observed on the downwind side, whereas the upwind side showed unimodal size distributions. For particulate mass, it can be estimated that the contribution from the motorway to the PM1 concentrations is in a range 0.6–1.3 μg m−3 for the chosen measurement sites approximately 60 m from the road at a height of 6 m. The soot measurements showed diurnal variation; however, the upwind downwind difference was not measured. Correlation factors showed good correlation between total particle number and number of particles with diameters below 80 nm, CO and NO. There was no correlation between particle number and PM10, which is due to the observation that particle number was dominated by the 20 nm particles.  相似文献   

18.
Accumulation aerosol particle distributions were measured on 14 June 1997 during two research flights over northwestern Greece, including the greater Thessaloniki area (GTA). At flight altitudes of about 5000 m (<550 mb), accumulation mode number particle size distributions appeared to be unimodal with a maximum in the first bin of the measured number size distribution with a mid-point of 0.11 μm. At lower altitudes and over the GTA, accumulation mode particle size distributions were bimodal with a first mode peak at 0.125 μm and a second mode peak at 0.275 μm. The second mode was more pronounced in areas of higher relative humidity, thus indicating the presence of deliquescent aerosols, but also in areas where high O3 concentrations were measured. Ozone concentrations ranged between 25 and 60 ppb at high altitudes east of GTA and between 50 and 110 ppb over the city of Thessaloniki with the maximum measured at an altitude of about 500 m. This is consistent with the local topographical and meteorological conditions, mainly due to the nocturnal inversion and the development of local circulation flows (land and sea breeze) over the city.  相似文献   

19.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

20.
Aerosols in the Mexico City atmosphere can have a non-negligible effect on the ultraviolet radiation field and hence on the formation of photochemical smog. We used estimates of aerosol optical depths from sun photometer observations in a detailed radiative transfer model, to calculate photolysis rate coefficients (JNO2) for the key reaction NO2+→NO+O (λ<430 nm). The calculated values are in good agreement with previously published measurements of JNO2at two sites in Mexico City: Palacio de Minerı́a (19°25′59″N, 99°07′58″W, 2233 masl), and IMP (19°28′48″N, 99°11′07″W, 2277 masl) and in Tres Marias, a town near Mexico City (19°03′N, 99°14′W, 2810 masl). In particular, the model reproduces very well the contrast between the two urban sites and the evidently much cleaner Tres Marias site. For the measurement days, reductions in surface JNO2 by 10–30% could be attributed to the presence of aerosols, with considerable uncertainty due largely to lack of detailed data on aerosol optical properties at ultraviolet wavelengths (esp. the single scattering albedo). The potential impact of such large reductions in photolysis rates on surface ozone concentrations is illustrated with a simple zero-dimensional photochemical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号